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ON TPE FORMAL SPECIFICATION OF

COMPUTER CON!,UNICATION PROTOCOLS

by

Kenneth F. Shotting

1. INTRODUCTIO;

Coputer networking, though only slightly over ten years old, has

already become widespread. Numerous networks now exist usinp

various networking technologies and communication protocols. It

has Riven rise to a whole new specialized area in the real, of computer

engineering and science. Companies have been formed over this

period, such as TELENET and TYiSHARE, with their major purpose being'

to offer networking services to clients. Interest is prowinp

in having the ability to interconnect networks using different

technologies.

The goal of internetworking is to allow a user on any system on any

network to access data or services on any other system in as transparent

a manner as possible. This is a long term goal, however a model for

such a system exists. The term catenet (concatenated network) has heen

coined for a collection of connected networks [Cer78].

The interconnection of networks leads to many technical prcblers.

Although different networks may provide similar services, it is often

. . . . .. -- . . . . I l , " . . .. . .. . I I I I I I I I I II I II ' 
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difficult to map these similar services across networks because of

differences in the underlyinp protocols and the lack of a Rood

definition of the protocols. Quite often the best definition of the

protocols is the running code. Problems of this nature point out the

need for an understandable definition of communications protocols.

Network interconnection is not completely responsible for such

problems, it just exacerbates them; even without network

interconnection problems exist. Problems are known to exist on the

ARPAnet (1).

Although some problems can be attributed to "growing pains", many

are just another manifestation of the general probelms experienced by

software -- protocols must ultimately be cast into software. As

such protocol implementation efforts have suffered the normal problems

suffered by large software systems: the software tends to be complex,

expensive, and difficult to understand, modify or maintain and late.

(I) A few examples. The ARPAnet Network Control Protocol (NCP)
has occasionally dropped or duplicated parts of messares. The
ARPAnet File Transfer Protocol (FTP) has truncated and
garbled files being transferred. The FTP problems rarely occur
when using two systems running essentially the same code
(although problems doubtlessly exist in this case), but
between two systems running different implementations of the
FTP protocol (e.p. one for TOPS-20; one for LINIX). In one case
getting a file from the TOPS-20 syster then sending it back
resulted in differences, whereas the same setting used to send
the file to the Ut.IY system then get it back gave an identity
mapping. In another instance the FTP protocol was randomly
setting "unusea" bits. Admittedly the transfer was somewhat
nonstandard. The file was an executable file stored as
ASCII characters; however, neither the TOPS-20 nor the UNIX
documentation warned that problems could occur if a character
file transfer used the full ASCII character set. Also, these were
not occasional network errors, but repeatable occurrences.
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Our goal in this theSIs is to explore the use of fornial development

techniques in the process of designing and implementing protocols.

Since it is easy to overlook difficulties or gloss over significant

problems with plausible but specious explanations by working with toy

examples, we will examine existing methodologies and protocols. It is

not meant to be either a protocol or methodology development effort but

an evaluation. The intent is to analyze what currently exists and to

make an effort to determine what changes and ir, roverents must be .MaLe

in each area to have an effective rmeldin2, of the two technologies. This

also attempts to approach the problem realistically from another point

of view. Actual problems rarely allow the freedom to start from

scratch. Normal practice involves making things work together in the

existing environment due to cost, scheduling and/or existing capital

investment. The difference between designing and verifying a system

with complete freedom versus with external constraints is very great.

W'e will investigate techniques that have been developed to

specify and verify the properties of concurrent programs. T2e

will discuss current needs in the area of protocol specification and

verification starting with what relationships exist between techniques

for verifying communication protocols and those necessary to verify

other large software projects such as operating systems. (Since

verification is the process of demonstrating a system consistent with

its specification henceforth we will assume that verification implies

specification to avoid constantly using the phrase "specify and

verify".)

-3-



Although the verification ot large software systers is not

currently feasible, interest in verifying such systems continues to

grow. There are three types of software whose verification is

recognized to be of major importance: operating systems,

communication protocols, and data base management systems. In a system

built along clear levels of abstraction these three are responsible for

three types of global information management. The communication

software is responsible for information transfer, the operating system

is responsible for resource management and the data base software

is responsible for information management. The reason for the

importance of these particular types of software is that they

provide global interactions among users and programs. Their incorrect

operation can affect many users whereas the incorrect operation of

an application program is normally localized. There is still

interest in verifying such application programs, in fact more

verification has been done on them because they tend to be

smaller and easier to specify. In this thesis, however, we are

interested in looking at how this technology can be applied to

communication systems and where improvements need to be made to make it

practical, not just for simple examples, but for something as complex as

a communication system.

2. SPECIFICATION AND VERIFICATION

From a verification perspective a system has the structure shown in

figure I. Between each of the boxes there is a verification

step to show that the next level properly maps the higher level into tlhe

-4-
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next lower level. The first correspondence step verifies that the

software specifications correspond to the piven formal model of the

renuirements. In the second correspondence step the executable proprar

is verified to correctly implement the specifications. If these steps

are successfully carried out, the software can be said to correctly

implement the modeled system.

--------------

Requirements

("odel)

-------------------

Spe ri f ic; r ions

-------------

n. i

The box represo'iting tile specifications may De (and for ar

systems must be) further decomposed into levels. The recuire-,ents for a

particular level will be derived from the specifications of the level

above it; its implementation will be in terms of the interface provided

by the level below it. The interface at a Riven level provides a

set of functions different from the functions provided at the

base hardware. These functions characterize the behavior in terrs

of the concepts of the level being defined. Such an interface is called

an abstract machine and the interface represents a level of

-5-



abstraction (i. e. a view of the system in terms of a set of functions

which are easier to grasp than thi detailed implementation).

Formal specifications are often viewed as serving two purposes.

First, as providing a complete and rigorous debcription of the

system being designed and second, as providing a basis for

mathematically proving that the software implementation meets t he

design. For the latter use the precise mathematical formalism is

admirably suited; for the former the necessary formal can

obscure the intended functionality and purpose.

Axiomatic specifications can lead to good concise models.

Axiomatic approaches are normally used in mathematical systems because

they allow a theory to be developed logically, step-by-step from a set

of assumptions which form the basis for the theory.

Axioms tend to define a function in terms of its overall

properties; sometimes such definitions are not intuitive. As an example

consider the following three axioms:

n>O -> f(n,n)-n
f (n,m)-f (m,n)
f(n,m)-f(n+m,m))

These axioms are necessary and sufficient to define the Greatest

Common Divisor (GCD) function. They are well known in the realm of

program verification; however, someone not familiar with these axioms

may spend a significant amount of time trying to determine the function

(if any) which they define.

-6-



An abstract machine gives a function defined in terms of its

inputs and outputs. An abstract machine can be used in a

specification as an intermediate step between axioms and code. The

followinp abstract machine definition of the GCD function gives a

clearer idea of the function to be implemented without actually

giving an implementation of the function.

f(INTEGER i, J) -> INTEGER k;

k = MAX({x I (i MOD x = 0) AND (J MOD x - 0)

An operational specification is essentially a definition by

example. It is very constraining on the implerentor as it gives no

information as to whether or not a equivalent algorithm for the same

function is acceptable. The following is an operation specification for

the GCD function; however, many other algorithms implement the same

function.

f(i, j){
while i > 0 do

if j >= i then j = j-i else swap(i, J);

result - j;}

The techniques discussed in the preceeding paragraghs range fror

the very abstract to the very concrete. They are not orthogonal but

hierarchical. When a subject is not well understood the only possible

specification may be an operational one. As the area evolves and

progresses, it is possible to migrate towards more abstract

specifications until necessary and sufficient conditions for the subject

area have been established.

The difference between these types of specifications is mostly one

of philosophy. The specification techniques, though intended for a

-7-



specific approach, are usually general enough to allow all three forms

of specifications to be written usinp its language. Often, though, the

verification technique and tools are such that attempting to verify a

program using other than the intended approach becomes very tedious, if

possible at all.

a. Choosing a Methodology

Our goal is to examine the use of formal methods in developing

protocols. The first step towards this goal is to choose the

overall methodology we will use for design, implementation and

verification. Some work has been done in an area generally called

protocol verification. A few survey papers have been written describing

the techniques which are available (Sun78, TAL79]. The techniques

described range from those intended to examine very protocol specific

features to those intended for developing general-purpose software.

As the overall methodology will guide the whole process it should

be chosen with care using well thought out criteria. The following

criteria seem essential for the goals we wish to accomplish. First,

communication protocols are normally developed in layers. A

methodology which provides a good layering structure would be

beneficial to the effort. Second, the methodology should be applicable

to types of software other than protocols. Protocols are not developed

in isolation; it should be possible to integrate protocol specifications

into other formal specification efforts, especially in the

areas of operating systems and data base management systems.

-8-
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IProtocol Layer I Functions I

16. Application I Funds transfer, Information I
I retrieval, Electronic mail, ... I

+-----------------------------------
15. Utility I File Transfer, Virtual terminal I
I support,

---------------------------------------------------------- +
14. End/End Subscriber 1 Interprocess communication (e. g.1

Virtual circuit, Datagram, Real

time, Broadcast, ...)
--------------------------------------------------------

13. Network Access I Network access services (e. g.
I Virtual circuit, Datagram, ...)

--------------- +---------------------------------------------

12. Intranet End/End I Flow control, Sequencing

+----------------------------------------------------

I. Intranet Node/Node I Congestion control, routing

4------------------------------------------------------------4-

10. Link Control I Error handling, Link flow controll

4------------------------4----------------------------------------------

Fig. 2

Figure 2 [CK78] is an example of protocol layering. In (CK78] the

authors analyze current network architectures and describe the ways

in which a selection of current networks fit into this framework.

This type of analysis is the major reason we believe any attempt to

verify protocols should clearly take this structure into account. In

some sense this should not prove to be a problem as the layering of

protocols is in response to current software design philosophies

which advocate decomposing programs into manageable units. Although

each layer is still a very complex unit, the decomposition shown

in figure 2 is a reasonable initial decomposition. In particular, each

layer can be viewed as an abstract machine on which the layer above it

executes. These layers can in turn be further decomposed into a set of

-9-



simpler abstract machines.

Designing software as a hierarchy of abstract machines is a well-

known technique in the realm of operating systems. This technique for

designing operating systems was pioneered by Dijkstra in the THE

operating system [Dij68J and has been used in many projects since. For

the same reasons that this approach is advocated as good practice for

the design of understandable, reliable software, abstract machine

architectures are used in some verification approaches. The abstract

machine approach advocates decomposing a large monolithic software

program into a set of programs each of which is less complex and zore

understandable than the original. In decomposing the design into many

small, understandable pieces, it also decomposes the theorems which are

generated into many small, easier to verify theorems.

Over the last several years significant effort has been put into

designing and implementing trusted (secure) operating systems. With the

current state of computer networking, such operating systems will need

to have the ability to manage network resources. One of the major

techniques being used, in attempts to develop trusted operating system,

is formal specification. Such operating systems will require network

software which is formally specified. After integrating the network

software the system should retain the level of trust (security) it

previously had. This would require the ability to integrate the

protocol and operating system formal specifications.

- 10 -



b. Specification and verification methodologies

We will consider four methodologies in this section. The criteria

for selecting these four for discussion were that they are in the public

domain, that reasonable documentation of each methodology exists and

that the tools associated with each methodology have been developed to

the point that they are useable by someone not intimately involved with

the development effort. The methodologies we will consider are the

Gypsy methodology of the University of Texas at Austin, the Hierarchical

Development Methodology of SRI International, the Affirm system from

USC-ISI, and the Stanford University Pascal verifier. A survey which

includes a descr'ption of these methodologies is available (CGHN80]. As

part of this survey all of the methodologies were used to specify some

very simple top level properties of a security kernel.

1. Gypsy methodology

The Gypsy methodology has been under development at the University

of Texas by the Certifiable Minicomputer Project (CMP) since 1974. The

specifications are based on the axiomatic approach. Development

proceeds from a top-level specification through successive refinements.

The Gypsy language is for both specification and implementation.

It is well suited for protocols in two ways. Its model of interprocess

communication is based on message buffers and particular attention has

been paid to concurrency.

- 11 -



The Gypsy Verification Environment (GVE) is a well integrated

system to aid the user in the design and verification process. It has

an excellent user interface. The major weakness of the GVE is the

theorem prover. As part of the proof process the system generates rany

fairly trivial theorems. Driving these proofs through the syster is

rather time consuming and tedious. Theorem proving problems exist to

one degree or another in all the systers.

Developing a system using Gypsy can proceed in many ways, but the

advocated way is a top-down, stepwise refinement approach. GVE provides

an incremental development and verification capability which allows some

one using the recommended procedure to write the top level, write the

interfaces to the next lower level, and then prove the correctness of

the top level. This procedure can be applied recursively at each level

to assure the correctness of the system at each step of the development.

Gypsy has been used to model a small subset of the ARPAnet (We176]

and work is being started under CMP to investigate the use of Gypsy for

protocol verification [Div8O]. Gypsy has also been used to develop a

small process for examining and approving for downgradinp portions of

classified documents which reside on computer systems. Texas

Instruments has used Gypsy as part of an exploratory effort for NASA to

develop very reliable software for an air traffic control system.

2. Hierarchical Development Nethodology (HDM)

HD11 is a methodology developed at SRI International for the

design of large hardware/software systems (Rob79, LRS79]. The

- 12 -
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methodology begins with a top-level description of the system's

requirements. The system is decomposed into modules and the

modules are organized hierarchically. Each module is specified as an

abstract machine after which each abstract machine is implemented

in terms of the data objects and the functions provided by the

level beneath it.

Although HDM includes both specification and verification, the

specification phases have been much further developed and tested than

the verification phases. Nodule specifications are written in a

nonprocedural language, Special (SPECIfication and Assertion Language).

Starting with a nonprocedural specification helps to decompose the

verification process; properties which are independent of implementation

can be proven before implementation decisions are introduced which

increase the complexity.

SRI has been active in the area of verification but up till now

effort has mostly concentrated on isolated areas. An effort is

currently underway at SRI to provide an integrated specification,

implementation and verification environment; a necessary effort if HE!!

is to be used on a system from system conception through life-cycle

maintenance

HDN has a history of use, most of it in the area of systems

requiring security. Much of its original development occurred during an

SRI project to design a Provably Secure Operating System (PSOS) [Neu77].

It has also been used in a good number of the security kernel systerms

which have been developed over the past few years. Of the projects

- 13 -
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using HDH the effort to build a Kernelized Secure Operatini. System

(KSOS) is the farthe.t into development. As part of the KSOS project a

formal description of the security kernel was written for both the

kernel interface and the levels into which the kernel is decormposed

(FAC79]. Since an emulator for the UNIX operating system was to be

provided to run in the kernel, a formal specification of the interface

of the UNIX operating system was also written [BD78].

3. Affirm

Affirm is an interactive verification system under development at

the University of Southern Califirnia's Information Sciences Institute

(ISI). It has grown out of two earlier verification projects, the XIVUS

Pascal verifier and the Data Type Verification System. It can be used

to prove properties about programs using abstract data types and verify

implementations which provide said properties [Tho79].

Like the Gypsy system, Affirm relies on the general notion of

refinement as its development methodology. It too is amenable to being

used to specify a hierarchy of abstract machines.

Specifications for the Affirm system are written in an algebraic

form based on predicate calculus; programs are implemented in a variant

of Pascal.

AFFIRM has been used on a varying collection of problers. The

DELTA experiment [rW79] involved specifying and verifying part of a

message processing system. It was used to verify parts of the UCLA

security kernel (Kem79], but it was not possible to verify the corplete

- 14 -
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kernel (2). There has also been some work in using AFFIR' to state

properties about protocols [SunCO].

4. Stanford Pascal Verifier

The Stanford Pascal Verifier (SPV) is an interactive system for

analyzing a program for consistency with its specification [Luc79]. It

is primarily a system for program verification. It contains no support

for abstract data type verification or hierarchical specification

development.

Specifications for the SPV system are written in an algebraic forn

based on predicate calculus; programs are implemented in a variant of

Pascal called Pascal Plus. The SPV is somewhat similar to the AFFIRM

system - it is stronger in the area of program verification and weaker

in its support of higher level constructs.

The SPV has mostly been used on small examples and has been used by

classes at Stanford University on program verification. The most

significant program, in terms of size, verified by SPV has been a

compiler for a Pascal-like language [Po180].

c. Hierarchical Development Methodology

Under the criteria set forth for choosing a methodology the

Hierarchical Development Methodology seemed to be the most reasonable

choice as a framework for developing protocols. It is a

(2) The author has used all of the systems under consideration;

it is doubtful any of them could have verified the complete
kernel.
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development methodology which encompasses design,

specification, implementation, and verification of large software

systems and a methodology specifically aimed at programs which are

amenable to being conceptually viewed as a hierarchy of abstract

machines.

The methodology decomposes the system design into stages anc

involves design, implementation and verification. Tie

implementation stages not only enforce good design and coding practices

but also are necessary to meet the verification goals. The

verification stages prove that the desigit meets the specifications as

it evolves and that the implementation programs correctly

implement the system as specified. The design stages and their

corresponding verification stages are shown in figure 3 [Rob79J.

Design Verification

sO: Conceptualization of system vO: develop global assertions
requirements

sl: Selection of user interface
and target machine

s2: decompose system into
hierarchical levels

s3: represent the functions of v3: prove the modules satisfy
each level as modules global assertions

s4: map state information between v4: show the mappings are
levels consistent

s5: implement the functions of v5: prove the abstract

level n in terms of the implementation consistent
functions at level n-i with module specifications

s6: Conversion of the abstract v6: Prove the executable code
implementations to executable consistent with the abstract
code implementations

Fig. 3

- 16 -
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HDM is a mix between an axiomatic and an abstract machine approach.

The first stage calls for the development of global assertions (axioms),

then at a later stage abstract machines are developed which, as a

minimum, are consistent with these assertions. In development efforts

where HDIM has been used this two tiered approach has been used to allow

well understood characteristics of the system to be axiomatized (e.g.

the security model for the KSOS security kernel) and the less understood

characteristics to be given by the abstract machine specification (e.g.

describing the interface of the KSOS kernel). We will continue this

practice in the specifications below.

Perhaps the greatest concern about the use of HD!! arose not in the

area of the methodology itself, but with the specification language,

Special, associated with it. Special is known to have some deficiencies

in the area of concurrent processes. As communication protocols will

require a specification language which has a good grasp of concurrency,

this could prove to be a serious problem.

The possibility existed of using another specification language in

place of Special. Perhaps the best choice in this area would have been

from the work of the Certifiable Minicomputer Project (CMIP) at the

University of Texas at Austin. CMP has developed a methodology for

specifying, implementing and verifying communications processing

software with particular emphasis on the problems of concurrency

[Goo77]. This system is not based on using a hierarchy of

abstract machines, but, according to its designers, can be used in

conjunction with a methodology using a hierarchy of abstract machines.

- 17 -



The specification language for the system, GYPSY tGoo781, would be well

suited for the task of protocol specification as its rodel of concurrent

processes involves communication through message buffers. az -,ajor

problem that occurs is that, although tools exist to support the user

for either system, these tools are not compatible. Since this is

intended as an exercise in specification rather than tool building it

was decided to stick with the language of HDM since, after examining the

exact problems, it seemed that Special would be adequate for the

specifications considered to be needed for this thesis. This assessment

was not entirely accurate, as will be described within the

specifications and conclusions.

An interesting exercise to pursue in the future would be to specify

the Internet Protocol (the example used below) in GYPSY and compare the

utility of the two approaches. Some comparison studies using simple

protocols have been made by Sunshine [Sun79].

One definite variance from HDM will be necessary for specifications

in the area of protocols. As protocols, by their very nature, are

intended for multiple systems, it will not be possible to define the

target machine except in the special case of a network using the sane

target machine throughout. Instead each implementation will have to

build up from its target machine the necessary functions to implement

the protocol. Therefore, one goal of a protocol specification will be

machine independence.

- 18 -
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d. SPECIAL

The specification language in which the modules are written is

called Special (SPECification and Assertion Language). It is a

nonprocedural specification language which formalizes a technique set

forth by Parnas [Par72]. Detailed information about Special can be

found in the language reference manual (RR77], a handbook on the use of

the languages of HDM [SLR 79), and the formal mathematical desLription

of the language [B,[ 78]. Of these the handbook gives the best insight

into why the specifications take the form they do. The paragraphs below

describe the major features of Special used in this thesis. Uncommon

features will be described within the actual specifications as comments

when used. Special keywords are set in capital letters in the

description.

A module consists of six sections termed paragraphs: TYPES,

PARAIETERS DEFINITIONS, EXTERNALREFS. ASSERTIONS, and FUNCTIONS. Any

empty paragraph is omitted.

Special is a strongly typed language and there are four basic

(built-in) types: INTEGER, BOOLEAN, CHAR(acter), and DESIGNATOR. The

designator type is used to give objects unique names. An implementation

must require that no tuo objects with identical designators exist

simultaneously. Any objects which do not consist of these predefined

types must be built from the basic types in the TYPES paragraph of the

module. The major composing operators are VECTOR-OF, SET-OF, and

STRUCT~OF. Additionally new types which are simply one of the basic

types may be declared to signify that two objects which are of one of
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the basic types are not interchangeable.

The PARAMETERS paragraph is used to declare objects which remain

fixed over any given instantiation of the module. This allows

implementation dependent information to be represented in the

specification without being overly restrictive.

The DEFINITIONS paragraph essentially provides global macro

expansions for the module. In the specification herein it is used to

give names to error (EXCEPTION) conditions which arise within the module

and names to some non-primitive constants of the module.

The EXTERNALREFS paragraph allows a module to import functions,

types, and exception conditions from another module.

The ASSERTIONS paragraph gives global properties maintained by the

module. They are invariants which are to be proven as part of the

verification.

The FUNCTIONS paragraph defines the state of the machine and the

available operations on the machine. There are two basic function types

in Special. A V-function (VFUN) is a function which contains and

returns information about the state of the abstract machine. An 0-

function (OFUN) changes the state of the abstract machine. Additionally

there is an OV-function (OVFUN) for operations which would be critical

sections in the actual code; it both maintains and changes state

information. Functions may have an EXCEPTIONS section which consists of

a set of boolean expressions. If any exception evaluates to true the

exception is returned; no other action occurs.
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A VFIJU may be either IIIDF!; or visible. Visihle VtI's spr't-fv the'

state of the abstract machine which can be observed fror a higher level

abstract machine. HIDDEN VFUNs contain information used by the abstract

machine to implement its functionality, but are not part of the

interface (i. e. information hiding). HIDDEN VFUI;s, since they are for

internal use only, have no EXCEPTIONS; the functions which call the

HIDDEN function must be verified to do all the necessary exception

checking.

A VFUN may also be either primitive or derived. The state of an

abstract machine is represented by its primitive VFUNs. Only primitive

VFCLs may be cited in the EFFECTS of an OFUN. Derived VFUNs exist to

present the state of the machine in a way more useful to the next hi-t or

level.

OFL':s are usec! to define the operations or, the data structures of

the module. Like visible VFUNs, they have EXCEPTIONS and the

interpretation is identical. The result of calling the OFI'N is stated

in the EFFECTS section. All EFFECTS are mathematical statements;

assignment is never implied. It defines a new, but not necessarily

unique, state for the abstract machine in terms of the current state.

Nondeterminism in the specification is encouraged both to point out

areas where the requirements may need to be nade more restrictive and to

give the implemnentor as much freedom as possible so that the most

efficient implementation which reets the requirements is allowed.
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A few notational remarks:

a) A new value of a VFUN (assigned by an OFUN) is

signified by preceding the name by a single quote C').

b) A VFUN designated as HIDDEN is only available

to the module in which it is defined; it may not

be accessed by other modules.

c) Question mark symbol (?) is a distinguished value

signifying UNDEFINED. A statement of the form

"<var> ?;" in the INITIALLY section of a VFUN

implies that for any set of arguments to the VFL1N for

which no value has been defined by some call to an OFUN,

the value of the VFUN is the distinpuished value,

UNDEFINED.

d) The statement RESOURCE~ERROR in an exception section

implies that an error occurred in a lower level module

implementing the function. It allows lower level resource

allocation decisions to be concealed.

e) The NEW operator applies to an object of type DESIGNATOR.

It returns a unique DESIGNATOR each time it is called and

therefore can be used to distinguish objects.

f) The construct

VECTOR-OF a I LENGTH(a) a b

is read as defining a vector of objects of type a, the

vector being b long where b must be of type INTEGER.

g) The construct -- symbolizes not equal.
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3. A HIERARCHY OF PROTOCOLS

Communication protocols, as stated above, are developed in layers.

These layers are each meant to present an abstract machine interface for

higher level protocols, both known and to be developed in the future.

This differs somewhat from the development of operating systems in which

a single visible interface is presented.

Figure 2 above presented protocol layering in the abstract; figure

4 presents a part of an existing protocol hierarchy. (The levels beside

the figure refer to figure 2.) This is a small selection from the

hierarchy which exists and is planned for the ARPA internetworking

experiment. Of particular note is that not only is a lower level

protocol expected to support multiple higher level protocols, but also

that higher levels may be expected to be implemented on different lower

level protocols.

At the highest level of specification, each protocol can be viewed

as providing a user interface for a specific type of service and mapping

the input parameters into a call to the next lower level which will

achieve the desired result.

Specifyiing the user interface will not lead to a single view of the

system but a view at each layer because each protocol is meant to be a

"user interface" to the next higher level and to allow for additional

protocols to be implemented dL that level.
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I APPAnet I Level 6
V tail I

---------

+---+-------------
I file

I Telnet I Transfer i Level 5
I Protocol I

4-- ---------------- -

- ------------

I :etwork I I Transrission 1 1 User
1 Voice 1 1 Control I I Datarram I Level 4
I Protocol I I Protocol I I Protocol
+---4+------ +.. -4+ +--+--N-

------------

I Internet I
I Datagran I Level 3
i Protocol I

-_---- - ---- -- ---

I ARPAnet I +----+----+ I Packet I Level 2
I .CP I I SATFET I I Radio I
----------- ----- -----

Fig. 4

In figure 4 each protocol is expected to run using the functions

and data objects provided by the protocol layer beneath it. In this

model a layer can be viewed as an abstract machine. Often the layerinc

is violated; sometimes minimally, sometimes seriously. No matter how

minimal the violation this "reaching into" another layer violates the
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abstract machine concept and intertwines the protocols. This

intermixing leads to the problems mentioned in the introduction --

lateness, complexity, etc.

A protocol has two different kinds of specification -- an interface

specification and an internal specification (figure 5). The interface

specification presents the abstract machine interface provided by the

protocol. The internal specification gives the details of the abstract

machine's internal structure. The internal specification presents the

-ecessary information to build the interface specification from the

functions provided by the abstract machine on which the protocol under

consideration is to run.

Interface Interface

+---------- ... Internal ---------

I Protocol < ---------------- >1 Protocol I
-----------

Fig. 5

The distinction drawn above, though artificial in the sense that

all of the layers are composed of abstract machines, tends to emphasize

the orthogonal purposes which the specifications serve.

Communication protocols are often believed to present sore

verification problems which are significantly different from those

found in operating systems and data base systems. Fecause

communication protocols require cooperating processes across rather
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error-prone transmission media, one must worry about corruption and loss

of data. The difference, from the viewpoint of specification and

verification, is mostly one of degree. Operating systems and data base

systems are subject to losses due to hardware failure and the inputs

received from an unspecified user process are probably more random

than from most transmission media. Probably the most important

difference is that since the characteristics of a communication

medium are predictable (in a probabilistic sense) more can be said about

various performance considerations of protocols.

The specification and verification problems mentioned above are

serious issues and research is needed into verification techniques for

such problems. This is not meant to imply a need for a separate area

called "protocol verification" because these problems need to be solved

for operating systems and data base systems. The need is to extend

current techniques in the area of program verification.

There is still though, one obvious difference which makes

communication protocol software unique and this difference cannot be

overlooked -- by its very nature communication protocol software is

distributed among at least two physically separated entities. The

effect this has on the specification process will be a topic of

discussion later.

a. Choosing a protocol

The discussion above eives a framework for specifying protocols.

It requires only that a protocol be pictured as an abstract machine.
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These abstract machines are arranged hierarchically providing a more

concrete view as the level of refinement increases. The next step is to

pick a point in the hierarchy to begin the specification task.

Of the possible points to begin the specification process in the

hierarchy outlined above the internet layer seems to be a logical

candidate. Although this may seem to be a middle out approach, this

layer seems to be the fundamental layer to which protocols above it and

below it must interface. The networking model we have given does not

state how many distinct protocols may exist at each layer. At most

layers many different protocols already exist. At the internet layer,

however, the choice is a single protocol, adding a further layer (i.e.

an inter-internet layer) or a collection of ad hoc connections.

Currently there are three major protocols being proposed for

network interconnection. The Defense Advanced Research Projects Agency

(DARPA) Internet Protocol (IP) [PosgCaJ, the PUP architecture of Xerox

Palo Alto Research Center (PARC) [Bog8O], and the Consultative Committee

on International Telephone and Telegraphy (CCITT) X.75 recommendation

[X.75]. Both IP and PUP are datagram oriented; X.75 is virtual circuit

oriented.

Although all three of these protocols are intended for network

interconnection, they do not approach the problem at the same network

layer. The IP and PUP proposals provide only end-to-end addressing;

higher level protocols are responsible for reliability. The X.75

recommendation is intended to provide reliable end to end delivery. In

this sense PUP and IP are at level 3 in the protocol hierarchy (see
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figure 4) whereas X.75 is at level 4. Being at a higher level X.75 is

also the least general -- it is designed to connect only networks which

use the CCITT X.25 protocol as their network access protocol.

The differences between IP and PUP are mostly matters of

philosophy. Of the two PUP tends to be simpler, mostly because it does

not handle fragmentation - the splitting of datagrams which are too

large to fit into another network. PUP does not ignore this problem,

it just considers it to be a problem to be handled by the gateways into

and out of each network. IP opted for simpler gateways with a more

complex internetworking protocol. Another difference is IP does

addressing on a host to host basis whereas PUP does addressing on a

process to process basis.

Although PUP and IP may differ in some minor matters of philosophy

the designers of both agree on one major point - there needs to be a

single internet layer.

We have chosen to study the IP in this thesis for two reasons. It

has been established as a standard for the Department of Defense.

Also, an agreement between the ARPAnet and PUP communities [Coh79]

states that when a conflict arises between IP and PUP as an internetwork

protocol PUP will be encapsulated in IP; therefore, we decided to use IP

as an example in this thesis.
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b. Distributing modules aronp, network entities

HDU has as one of its goals to be a methodology applicable to

designing software systems which in some sense constitute a family of

processes. SRI has investigated this to a degree in an effort to define

a family of operating system for the Army but this effort was

discontinued [Neu76]. This work forms a basis for using DM with a

system which is a family of processes such as the protocol model given

in figure 4. The effect of distributing the modules of a family among

the loosely coupled systems of a network needs to be investigated.

The earily stages of HDM (0-2) purposefully attempt- to place

minimal restrictions on implementation decisions; the only requirement

is that the implementation meet the specification. Modules may be

implemented as hardware, software, firmware or a combination thereof;

they may run on the same processor or be distributed among many

processors. SRI has an effort underway which involves distributed

processing. The SIFT (Software Implemented Fault Tolerance [Wen76])

system is a collection of distributed processors which use software

redundancy among processors to compensate for hardware failures.

Although this effort will face some. of the problems which a distributed

network raises, it is not as severe a test as a system such as the

ARPAnet because the whole effort is being done at one location by a

single, closely coordinated team. In networks there is a need to

communicate implementation decision which must be made in common by all

processors to allow effective communication.
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The major problem which independent implementations seems to

cause is that the specification must include some information which

is normally not needed because the compiler hides such details. A

compiler will use internal representations for objects which are

consistent across module boundaries. If modules are compiled using

different compilers (a very likely circumstance in a heterogeneous

network), either the compilers must use a common representation when

objects from one module need to be interpreted by another or they must

have the ability to distinguish and transform from one representation

to another.

4. THE INTERNET PROTOCOL

One item any formal specification needs is a commentary

explaining the overall purpose of each major subsystem and the

philosophy behind its specifications. The commentary should reveal

to the reader the decisions behind the mathematical description.

The goal is not to bias the reader but to guide him, explaining to him

the purpose behind each function in the specification. Recall the

GCD function given above. Without being told what function was being

represented some one unfamiliar with this set of axioms may have to try

many possible functions before concluding that the axioms define the GCD

function. Even though a commentary will only give an inforral notion

of the system being specified, this can greatly enhance the speed of

comprehension. There is a danger with providing such a commentary. It

is much easier to decide (mistakenly) that a function performs a

specific function after being told the intended function than to
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recreate the original mistake. It is the reader's job to confirm that

the specification corresponds to both his understanding of the

purpose of the system under develonment and the informal description.

In the specifications which follow, specific descriptive information

about each unit within the specification will be given as comments

within that unit.

A good description of the IP already exists [Pos8Oa]. Excerpts

relevant to understanding the formal specifications (3) are included

below.

There are three parts of the description in which we are

interested: the purpose, the interface description and the internal

description. The purpose is essentially the conceptualization of the

system requirements, stage sO of 1iD!. The purpose provides the basis

for the global assertions of the system, stage vO. This stage requires

that the informal English statement of the purpose be restated in formal

mathematics terms. The sl stage of HD! requires choosing two interfaces

the interface the IP will present to users and the interface of the

abstract machine on which the IP will run. The protocol touches on both

of these matter but it concentrates mostly on the internal description

of the protocol. The internal description is fairly complete, although

the actions to be taken in the event of some unexpected situations are

often undefined.

(3) Henceforth the term protocol description will be used to

refer to [Pos8Oa]. The term protocol specification will not be
so used.
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a. Purpose

The Internet Protocol is designed for use in interconnected systers
of packet-switched computer communication networks. The internet
protocol provides for transmittinp blocks of data called datagrams
from sources to destinations, where sources and destinations arc
hosts identified by fixed length addresses. The internet protocol
also provides for fragmentation and reassembly of long datagrams, if
necessary, for transmission through "small packet" networks.

The Internet protocol is specifically limited in scope to provide

the functions necessary to deliver a package of bits (an internet
datagram) from a source to a destination over an interconnected
system of networks. There are no mechanisms to promote data
reliability, flow control, sequencing, or other services commonly
found in host-to-host protocols.

The above description gives the major purpose the IP is intended to

fulfill. Although nowhere explicitly stated in the IP description,

there are a number of other services which the IP is expected to

provide. These are provided by the IP as what are termed internet

options.

Though an informal statement of the requirerents is rather easy,

mathematical formalization is much harder. The state of formal

specification is not at a point where all requirements can be stated

mathematically in such a manner so as to be proven.

We can state some properties about the IP which should be provable.

These properties are rather weak as the service provided by the IP ha3

very little sophistication. The IP does not specifically concern itself

with anything but the correctness of the internet header. It provides

a checksum for the header but none for the data. Any strong correctness

criteria will only be able to deal with the contents of the

internet header.
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Despite the fact that the IP makes no claims about the correctness

of the data it delivers, the IP must have some concern for it. Althou;h

the description never explicitly states it, any implementation of the IP

which always delivered corrupted datagrams would have to be considerec

incorrect. Informally it can be assumed that an implementor knows this

but a formal specification would need to include a statement to the

effect that no deterministic step will ever cause a datagram to be

delivered in error, or that if sent often enough a datagram will pet

through with the data intact or recoverable (i. e. successful forward

error correction).

b. Interface description

Because of the generality of the higher level protocols which the

IP is meant to service, it essentially presents a set of user

interfaces. These interfaces are meant to accommodate users whose

requirements range from needing nothing but an unordered stream of

datagrams to those wanting to implement highly structured data streams.

The protocol description gives two sample calls as an example interface

[Pos8OaJ.

T'e following two calls satisfy the requirements for the user

to Internet protocol module communication ("->" means returns):

SEND (dest, TOS, TTL, BufPTR, len, Id, DF, options > result)

where:

dest - destination address
TOS - type of service
TTL - time to live
BufPTR - buffer pointer

len - length of buffer
Id - Identifier
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DF - Don't Fragment
options - option data
result - response
OK - datagram sent ok
Error - error in arguments or local network error

RECV (BufPTR -> result, source, dest, prot, TOS, len)

where:

BufPTR - buffer pointer

result - response
OK - datagram received ok
Error - error in arguments

source - source address
dest - destination address
prot = protocol
TOS = type of service

len = length of buffer

In the course of specifying the protocol two errors were found in

the sample RECV call. One problem is that the call should contain a

return parameter for the IP options. However, not all option types

should be visible at the interface. The NO OP and end of options option

are implementation details and the General Error Report is an exceptions

reporting mechanism. (The types of options are described in detail

below.) The second problem is that the protocol should be a parameter

to the call, not a result. With these emendations the call would be:

RECV (BufPTR, prot -> result, source, dest, TOS, opt, len)

c. Internal description

The internal description essentially defines an abstract data type

called an internet datagram or packet. Having this well defined format

solves many of the problems referred to in the section discussing what

the consequences are of spreading IP implementation among heterogeneous
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computers on a network.

The format of the III header Is Piven in fipure h. It, and thC

description followinr, are drawn from (Pos8Oa]; the footnotes are not

from the quoted source.

C 1 2 3

0 123456789012345 6 789012345678901
+-+-.++-+-+-+-+-+-+i-+-+-+-+-+-+--+-i-+-+ 4i+.6+--+-+-+-+-+

(Versioni IHL IType of Servicel Total Length
------ +-+-+- +-i+-+-+-+--+- +-+-+-+-+-i-i-+-+-+-+ iifii+

Identification JFlagsj Fragment Offset
i-- i -+ -- +- i+- i- - +-i i-+ i--+ -- +----+- ;+

Time to Live Protocol I Header Checksum

Source Address
+-+--+-++-+-- -++--++-1--+--+-+-+-i+----

Destination Address
+--+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-#-+-+-+-+-- -+-+-+-+-+-+-- +

Options I Padding I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---+++++ -+- ++

Fig. 6

Each tick mark represents one bit position.

Version: 4 bits

The Version field indicates the format of the internet header.

This document describes version 4.

IHL: 4 bits

Internet Header Length is the length of the internet header in 32

bit words, and thus points to the beginning of the data. Note

that the minimum value for a correct header is 5.

Type of Service: 8 bits

The Type of Service provides an indication of the abstract

parameters of the quality of service desired. These parameters

are to be used to guide the selection of the actual service

parameters when transmitting a datagram through a particular

network.

Bits 0-2: Precedence.

Bit 3: Stream or Datagram.

Bits 4-5: Reliability.
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Bit 6: Speed over Reliability.
Bits 7: Speed.

0 1 2 3 4 5 6 7+- - - --- - -- --- --------4-...- .. - .. -------. .. . .. - --

PRI I I I I
I PRECEDENCE 1 STRM RELIABILITYI S/R SPEEDIII I I I I

PRECEDENCE STRN RELIABILITY S/R SPEED

111-Flash Override I-STREAM! 11-highest 1-speed 1-high
110-Flash O-DTGFdL 10-higher 0-rlblt 0-low
1 IX-Immediate 0l-lower
OIX-Priority CO-lowest
OOX-Routine

The type of service is used to specify the treatment of the

datagram during its transmission through the internet system.

Total Length: 16 bits

Total Length is the length of the datagram, measured in octets,
including internet header and data. This field allows the length
of a datagram to be up to 65,535 octets. All hosts must be
prepared to accept datagrams of up to 576 octets (whether they
arrive whole or in fragments).

Identification: 16 bits

An identifyin? value assigned by the sender to aid in assembling
the fragments of a datagram.

Flags: 3 bits

Various Control Flags.

Bit 0: reserved, must be zero
Bit 1: Don't Fragment This Datagran (DF).
Bit 2: More Fragments Flag (NF).

0 1 2

I D I 1 I
IOIFIFI

Fragment Offset: 13 bits

This field indicates where in the datagran this fragment belongs.
The fragment offset is measured in units of t octets (64 bits).
The first fragment has offset zero.
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Time to Live: 6 bits

This field indicates the m.ximum time the datagram is allowed to
remain in the internet system. If this field contains the value
zero, then the datagram should be destroyed. This field is
modified in internet header processing. The time is measured in
units of seconds. The intention is to cause undeliverable
datagrams to be discarded.

Protocol: 8 bits

This field indicates the next level protocol used in the data
portion of the internet datagram.

Header Checksum: 16 bits

A checksum on the header only. Since some header fields may
change (e.g., time to live), this is recomputed and verified at
each point that the internet header is processed.

The checksum algorithm is:

The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words in the header. For purposes
of computing the checksum, the value of the checksum field is
zero.

Source Address: 32 bits

The source address. The first octet is the Source Network, and
the following three octets are the Source Local Address.

Destination Address: 32 bits

The destination address. The first octet is the Destination
Network, and the following three octets are the Destination Local

Address.

Options: variable

The option field is variable in length. There may be zero or more
options. There are two cases for the format of an option:

Case 1: A single octet of option-type.

Case 2: An option-type octet, an option-length octet, and
the actual option-data octets.

The option-length octet counts the option-type octet and the
option-length octet as well as the option-data octets.

The option-type octet is viewed as having 3 fields:
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1 bit reserved, must be zero
2 bits option class,
5 bits option number.

The option classes are:

0 - control

I - internet error
2 - experimental debugging and measurement
3 - reserved for future use

The following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

0 0 - End of Option list. This option
occupies only I octet; it has no
length octet.

0 1 - No Operation. This option occupies
only 1 octet; it has no length octet.

0 2 4 Security. Used to carry Security,

and user group (TCC) information
compatible with DOD requirements.

0 3 var. Source Routing. Used to route the

internet datagram based on information
supplied by the source.

0 7 var. Return Route. Used to record the
route an internet datagram takes.

0 8 4 Stream ID. Used to carry the stream
identifier.

1 1 var. Ceneral Error Report. Used to report
errors in internet datagram processinr.

2 4 6 Internet Tirestarp.
2 5 6 Satellite Timestamp.

Specific Option Definitions

End of Option List

1000000001

Type-O

This option indicates the end of the option list. This
night not coincide with the end of the internet header

according to the internet header length. This is used at
the end of all options, not the end of each option, and need
only be used if the end of the options would not otherwise
coincide with the end of the internet header.

- 38 -



I

May be copied, introduced, or deleted on fragmentation.

No Operation

100000001 I

Type-I

This option may be used between options, for example, to
align the beginning of a subsequent option on a 12 bit
boundary.

May be copied, introduced, or deleted on fragmentation.

Security

This option provides a way for DOD hosts to send security
and TCC (closed user groups) parameters through networks
whose transport leader does not contain fields for this

information. The format for this option is as follows:

-- -------------- +-----

1000000101000001001000000SS I TCC I
S--- ---- +

Type-2 Length-4

Security: 2 bits

Specifies one of 4 levels of security

l1-top secret

10-secret
01-confidential
O0-unclassified

Transmission Control Code: 8 bits

Provides a means to compartmentalize traffic and define
controlled communities of interest among subscribers.

Note that this option does not require processing by the
internet module but does require that this information be
passed to higher level protocol modules. The security and
TCC information might be used to supply class level and
compartment information for transmitting datagrams into or
through ALUODIN II.

Vust be copied on fragmentation.
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Source Route

I00000Lj1 length I source route

Type-?,

The source route option provides a means for the source of

an internet datagram to supply routing information to Le
used by the gateways in forwarding the datigram to the

destination.

The option begins with the option type code. The second

octet is the option length which includes the option type

code and the length octet, as well as length-2 octets of

source route data.

A source route is composed of a series of internet

addresses. Each internet address is 32 bits or 4 octets.

The length defaults to two, which indicates the source route
is empty and the remaining routing is to be based on the

destination address field.

if the address in destination address field has bcen reached

and this option's length is not two, the next address in the

source route replaces the address in the destination address

field, and is deleted from the source route and this
option's length is reduced by four. (The Internet Header

ength Field must be changed also.)

Pust be copied on fragmentation.

Return Route

10000111 length I return route
- ---- ----- --- 4-----4.- -- ----

Type-7

The return route option provides a means to record the routp
of an internet datagram.

The option begins with the option type code. The second
octet is the option length which includes the option type

code and the length octet, as well as length-2 octets of

return route data.

A return route is composed of a series of internet

addresses. The length defaults to two, which indicates the

return route is empty.

When an internet module routes a datagram it checks to see
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if the return route option is present. If it is, it inserts
its own internet address as known in the environment into
which this datagram is being forwarded into the return route

at the front of the address string and increments the length
by four.

Not copied on fragmentation, goes in first fragment only.

Stream Identifier

-- - - -- -- - -- -- -- -- --- - - --. -

I00001000I000000101 Stream ID I

Type-8 Length-4

This option provides a way for the 16-bit SATNET stream
identifier to be carried through networks that do not

support the stream concept.

Must be copied on fragmentation.

General Error Report

- + -------------------------
1001000011 length Jerr codel id I

S-- ------- +---- ..-
Type-33

The general error report is used to report an error detected

in processing an internet datagram to the source internet
module of that datagram. The "err code" indicates the type
of error detected, and the "id" is copied fror the

identification field of the datagram in error, additional
octets of error information may be present depending on the
err co('".

If an internet datagram containing the general error report
option is found to be in error it must be discarded, no

error report is sent.

ERR CODE:

0 - Undetermined Error, used when no information is
available about the type of error or the error does not
fit any defined class. Following the id should be as ruch
of the datagram (starting with the internet header) as
fits in the option space.

I - Datagram Discarded, used when specific information is
available about the reason for discarding the datagram can
be reported. Following the id should be the original
(4-octets) destination address, and the (1-octet) reason.
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Reason Description

0 No Reason
I No One Wants It - No higher level protocol

or application program at destination wants
this datagram.

2 Fragmentation Needed & DF - Cannot deliver
with out fragmenting and has don't fragment
bit set.

3 Reassembly Problem - Destination could not
reassemble due to missing fragments when
time to live expired.

4 Gateway Congestion - Gateway discarded

datagram due to congestion.

The error report is placed in a datagram with the following
values in the internet header fields:

Version: Same as the datagram in error.
IHL: As computed.
Type of Service: Zero.

Total Length: As computed.
Identification: A new identification is selected.
Flags: Zero.
Fragment Offset: Zero.
Time to Live: Sixty.
Protocol: Same as the datagram in error.
Header Checksum: As computed.
Source Address: Address of the error reporting

module.
Destination Address: Source address of the datagram

in error.
Options: The General Error Report Option.

Padding: As needed.

Not copied on fragmentation, goes in first fragment only
(4).

Internet Timestamp

----------------+------. - -------.-----

01001000000100 time in milliseconds 1
---- ----------------

Type-68 Length-6

The data of the timestamp is a 32 bit time measured in
milliseconds.

Not copied on fragmentation, goes in first fragment only.

(4) This statement is correct, however, a GER cannot be
fragmented because it is only a datagram header.
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Satellite Tirestarp

4 -- - - - - - - - - - -- - - - - - - - - - 4 ---------

1010001011000001001 time in milliseconds I

Type-69 Length-6

The data of the timestamp is a 32 bit time measured in

milliseconds.

Not copied on fragmentation, goes in first fragment only.

Padding: variable

The internet header padding is used to ensure that the
internet header ends on a 32 bit boundary. The padding is
zero (5).

d. Interface vs. internal description

Although the IP description is intended to be both an interface and

an internal description of the protocol it is more concerned with

describing the internal structure of an IP implementation than with

presenting a good interface to the IP. Consider the way the description

treats the the routing options of IP.

SE11D(sa A, da B, sr <C, D, E>, rr <>)

sa - source address

da - destination address

sr - source route

rr - return route

capital letters are internet addresses

angle brackets are used to enclose a list of addresses

The interpretation of this call would be to deliver a datagram to F

(5) Effectively end of option list bytes.
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passing through B, C and 1) on the way. IUhen It arrived at F a F.CV call

would return

(sa A, da E, sr <>, rr <D, C, B>)

(This makes the assumption that the only internet routing along the way

is done at B, C and D). To return the packet to A the next level rust

reformat these arguments as follows:

(sa E, da D, sr <C, B, A>)

In addition to being slightly confusing using this format makes the

assertions about the IP more complicated. Instead of being able to

state that if a datagram is delivered on a RECV call that a SEND call

was made with this address as the destination, it is necessary to

include a special clause to deal with the way routing options work.

The problems could be "solved" by defining the call at the

interface differently. Let the call at the interface be

SEND(sa A, da E, sr <B, C, D>, rr <>)

and have the IP reformat the arguments internally as they were in the

call above - (sa A, da B, sr <C, D, E>, rr)

At the receiving end the argument returned by RECV can be used to

return an answer simply by swapping source and destination. This

reformatting also removes the need to have a special case in the

assertion about where the datagram will be delivered.
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The situation described above normally occurs due to the way desipn

is done. The requirement stated would be to the effect that the

protocol provide a way to do explicit routing and to collect routing

information on the way. No further refinement of the requirement is

often done until implementation decisions are made. This decision then

becomes the interface to the system.

The requirements should not overconstrain the implementation.

However, after implementation decisions are rode which reflect upward,

the upper level specificatiOn should 1e revised to -resent a clear,

consistent interface.

5. USER INTERFACE FORMAL SPECIFICATIONS

The interface described here is different from the interface which

is necessary to use the full functionality provided by IP. It attempts

to provide an interface which hides all of the implementation specific

details of the IP. In many ways it is the type of interface which woulc

be very appropriate to the User Datacram Protocol (UDP) (Pos79]. !!ost

of this interface specification could be directly imported into a

specification for the UDP. It would not require any changes, just the

addition of four fields of the UDP header which would map on to the data

portion of the IP.

a. Module: Inet-send

This module provides the user interface to the IP. It is intended

to be an interface which hides all inner workings of the implementation
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from the user. Certain parameters defined in the protocol description

are not available nt this Interfac:v (el. p. the Identification field).

Higher level protocols which require access to such fields must have

access to the abstract machine which implements lnet-send. The VFUNs of

this module are all HIDDEN as the protocol description has no functions

which return this information. If desired a derived VFUN, Status, could

be defined.

MODULE Inet-send

TYPES

Byte: (0..2lByte-size-1);

Flag: BOOLEAN;
Data: VECTOR-OF Byte;
Char-str: VECTOR-OF CHAR;
Optn: STRUCT-OF(Char-str opt-type, INTEGER optlIn;

Data opt-info);
$(At the user level options consisting of a single octet
should never be visible.)

Options: SET-OF Optn;
Pkt-id: DESIGNATOR;
Type-of-serv: STRUCT-OF(CIIAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);
Packet: STRUCT-OF(INTEGER ver; Type-of-serv tos; INTEGER ttl;

Char-str pcol, sa, da; Options o; Data d);

PARAIIETERS

INTEGER Version;
INTEGER Byte-size;
INTEGER Source-net;
SET-OF Char-str Source-addrs;
Char-str Default"source-addr;
INTEGER Max-inet-pkt;
SET-OF Char-str Legal-addr;
SET-OF Char-srr Option-types;
$(This set would not contain NO OP, End of Options, or GER.)
SET-OF Char-str Protocols;
SET-OF Char-sir Service-types;
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DEFINI:TIONS

13OOLEAN Unknownanddr (Charst r .tddr) IS
NJOT (addr INSET Legal-addr);

BOOLEAN Unknown-pcol(Char-str c) IS NOT(c INSET Protocols);

BOOLEAN Unknown-opt(Optn opt) IS NOT(opt-opt-type INSET
Option-types) ;

BOOLEAIT Invalid-tos(Char-str c) IS NOT(c INSET Service-types);

BOOLEAN Invalid-pkt(Pkt-id id) IS NOT (id INSET Current-idso);

BOOLEAN Too-sall(INTECER t) IS t <- 0;

EXT ERALREFS

FROM Virt-net:
OFUN Send-co-net(Packet p);

FUNCTIONS

VFUN Type-of-service(Pkt-id id) -> Type-of-serv tos;
HIDDEN;
INITIALLY tos - ?

VFW1N Time-to-live(Pkt-id id) -> INTEGER ttl;
S(Time measured in seconds. The General Error Report has a
default tine to live of sixty seconds. This type of packet
does not appear at this interface, however, so the default
of UNDEFINED will be used for all cases which occur at the
user interface.)

HIDDEN;
INITIALLY ttl ?;

VFUN Protocol(Pkt-id id) -> Char-str pcol;
HIDDEN;
INITIALLY pcol - ?

VFUN Source-addr(Pkt-id id) -> Char-str sa;
HIDDEN;
INITIALLY sa - Default-source-addr;

VFUN Dest-addr(Pkt-id id) -> Char-str da;
HIDDEN;
INITIALLY da

VFUH Option-field(Pkt-id id) -> Options opt;
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HIDDEN;
INITIALLY opt -(}

VFUN Msjg(Pkt-id id) -)Data m;
HIIDDEN;
INITIALLY m - ?

VFUN Packets-in-prog(Pkt-iA Id) ->Packet p;
EXCEPTIONS

Invalid-pkt(id);

DERIVATION
STRUCT (Version,
Type-of-service (id),
Timeto-live (id),
Protocol (id),
Source-addr(id),
Dest-addr(id),
Option-field(id),

Ms g(id) );

VFUN Current-ids()o SET-OF Pkt-id ids;
HIDDEN;
INITIALLY ids ={)

OVFUN Makepkt() -> Pkt-id id;
EFFECTS
id - NEW(Pkt-id);
'Current-ids()- Current-ids() UNION {id};

OFUN Set-tos(Type-of-serv tos; Pkt-id id);
EXCEPTIONS

Invalid-pkc (id);
Invalid-tos (tos);

EFFECTS
'Type-of-service(id) - tos;

OFUN Set-ttl(TNTEGER ttl; Pkt-id id);

EXC EPT ION S
Invalid-pkt (id);
Toosnall(ttl);
RESOURCE-ERROR;
$(ttl too large to fit in space allowed by lower level

representation)

EFFECTS
Timeto-live(id) -ttl;

OFUN Set-protocol(Carstr pcol; Pktid id);
EXCEPTIONS

Invalid-pkt (id);
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Unknown-pcol(pcol);

EFFECTS
"Protocol(id) - pcol;

OFUN Set-dest-addr(Char-str da; Pkt-id id);
EXCEPTIONS

Invalid-pkt (id);
Unknown-addr(da);

EFFECTS
'Dest-addr(id) - da;

OFL14 Set-options(Optn opt; Pkt-id Id);
EXCEPTIONS

Invalid-pkt (id);
Unknown-opt(opt);
RESOURCE ERROR;
$(This last exception is used to reflect a header
overflow at the lower level without introducing the
header size at this level.)

EFFECTS
'Option-field(id) - Option-field(id) UNION {opt};

OFUN Set-data(Data d; Pkt-id id);

EXCEPTIONS
RESOURCE-ERROR;

EFFECTS
Msg(id) - d;

OFUN Destroy(Pkt-id id);
$(Allows a packet to be flushed from the system without

sending. It does not ovenrite any information about the
packet, it just makes the packet inaccessable since its id
is no longer valid. As part of the implementation the
resources used by this packet could be reclaimed but the
specification does not require this.)

EXC EPT IONS
Invalid pkt (id);

EFFECTS

"Current-ids() - Current-ids() DIFF (id};

OFUN Dispatch(Pkt-id id);
EXCEPTIONS

Invalid-pkt (id);
EFFECTS

*Current-ids() -Current-ids() DIFF (id);
EFFECTS-OF Send-to-net(Packets'in-prog(id));

END'TIODULE
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b. Module: Inet-recv

This module is essentially the comnplereent of I et-send. It aIIows

an implementation to return all IP header fields at once or to get the

packet identifier and use it to request only those fields needed as

needed. This module has few exception conditions as most errors are

not observable at the user interface. Packets arriving with an error in

the header (i.e. a bad checksum) are not passed up to the user

interface. At this level it is the same as if the network discardec

that packet. Similarly, a misrouted packet never becomes available to

the user.

11ODULE Inet-recv

TYPES

Byte: (0.•2-Byte-size-1);

Flag: BOOL'AN;
Data: VECTOR-OF Byte;

Char-str: VECTOR-OF CHAR;
Optn: STRUCT-OF(Byte data, length; Data opt-info);
Options: SET-OF Optn;

Pkt-id: DESIGNATOR;
Type-of-serv: STRUCT-OF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);

Packet: STRUCT-OF(ITTECER ver; Type-of-serv tos; INTEGER ttl;

Char-str pcol, sa, da; Options o; Data d);

PARAIIETERS

INTEGER Version;

INTEGER Byte-size;

INTEGER Max-pkt;

DEFINITT .

BOOLEAN Invalid-pkt(Pkt-id id) IS NOT(id INSET Current-idso);
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EXT ERVALREFS

FROMl Virt-net:
OVFUN Pecv-fm-net(Char-str da, pcol; BOOLEA11 blk) - Packet p;

FUNCTION S

VFUN Type-of-service(Pkt-id id) -> Type-of-serv t;
EXCEPTIONS

Invalid -okt (id);

DERIVATION In-packe ts (id ). t os;

VFUN Time-to-live(Pkt-id id) -> INTEGEP t;
HIDDEN;
$(The value of this function Is not available to the user

interface; therefore, it is given as a hidden function.
The module Itself may wish to use this value for
diagnostic and performance purposes but in some cases it
does not have a defined value, the times when the packet
was reassembled from fragments.)

INITIALLY t - ?;

VFUN Protocol(Pkt-id id) -> Char-str p;
EXCEPT IONS

Invalid-pkt (id);

DERIVATION In-packets(id).pcol;

VFUN Source-addr(Pkt-id id) -> Char-str s;
EXCEPTIONS

Invalid-pkt(id);

DERIVATION In-packets(id) .sa;

VFUTI Dest-addr(Pkt-id id) -> Char-str d;
EXCEPTIONS

Invalid-pkt (id);

DERIVATION In-packets(id) .da;

VFIJN Option-field(Pkt-id id) -> Options opt;
EXCEPTIONS

Invalid-pkt(id);

DERIVATION In-packets(id).o;
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VFUN Msg(Pkt-Id id) -> Data Ii;

EXCEPTIONS

Iuvaliclpkt (id);

DERIVATION In-packets(id).d;

VFUN Msg~length(Pkt-id id) -> INTEGER i;
$(The interface description requires the IF to return the

length of the buffer it pasces Lack. This function makes
that information available.)

EXCEPTIONS

Invalid-pkt (id);

DERIVATION LENGTH(In-packets(id) .d);

VFUN In-packets(Pkt-id id) -> Packet p;
HIDDEN;
INITIALLY p = ?;

VFUN Current-ids() -> SET-OF Pkt-id id;
HIDDEN;
INITIALLY id { );

OVFUN Receive(Char-str da, pcol; BOOLEAN b1k) -> Pkt-id id;
$(The RESOURCE-ERROR exception can be napped by a higher lev
machine into either busy waiting or a software inte-upt.)

EXCEPTIONS
RESOURCE-ERROR;

EFFECTS
id - VEW(Pkt-id);
In-packets(id) = EFFECTS-OF Recv-fm-net(da, pcol, bik);
In-packets(id).ttl > 0 ->

"Current-ids() = Current-ids() UNION {id};

$(The description states that packets are never delivered
with time to live <= 0. The intent is to check this
field whenever the header is processed so as to purge
the net of undeliverable packets. This is an
implementation decision; the above specifies only what
will be true if the packet is delivered to the user
interface.)

END ThODULE
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c. Module: Virt-net

At the user interface the network can be viewed as a collection of

packets bound for a particular protocol at a particular destination.

The best data representation would be as a multiset(6). Unfortunately,

Special does not support multiset as a primitive data type. It is

possible to define a module in Special to implement multisets but it is

a rather involved process (due to the lack of features to encapsulate

data types) which would add nothing to this presentation. For this

presentation we will assume that I!ULTISET~OF is a predefined type with

operations to add and subtract elements.

It would be possible to use the VECTOR-OF construct to represent

the network with the receive done on a random element. If

properties about performance were of concern using a vector would

probably present a construct closer to the properties that the actual

implementation would have. The probability of receivin' a

packet could be based on its position in the nueue which would he a

function of when it :as sent.

Sore of the effects of the communication network on the actua'

data transfer can be modeled in a way similar to the suggestion of ho:

to take into account parity errors in PSOS [Neu77. This involves

specifying OFINs which have the error as their effects. This function

can then be "called" by the offending "process". The verification

(6) A rultiset is a structure similar to a set except that
duplicates are allowed. Adding two multisets results in a
multiset with each element occurring the sum of its occurrences
in the original multisets. Subtraction behaves in a similar
manner.
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must take Into account that the implementation behavior of an abstract

machine is not known. In implemeutation proof it will still not be

known except probabilistically. This means probabilistic methods will

need to be introduced into the proof. The verification will give

only a level of confidence.

MODULE Virt-net

TYPES

Mset: MULTISET~OF Packet
Char-str: VECTOR-OF CHAR;
Options: SET-OF Char-str;
Pkt-id: DESIGNATOR;
Type-of-serv: STRUCT~OF(CIIAR precedence; Flag str.;

CHAR reliability; Flag svsr, speed);
Packet: STRUCT~OF(Type-of-serv tos; INTEGER ttl;

Char-str pcol, sa, da; Options o; Data d);

FUNCTIONS

VFUN Network(Char-str da, pcol) -> Mset p;
$(The network is the set of packets bound for a destination
address. The packets are sorted by protocol at this level
since a process receiving from the net will be doing the
receive based on a call from a higher level protocol.)

HIDDEN;
INITIALLY p - ?;

OVFUN Recv-fm-net(Char-str da, pcol; BOOLEAN blk) -> Packet p;
$(This function chooses a packet from those awaiting
delivery, removes it from that set and returns it to the
caller. This function points out another problem with
Special. The description calls for receive to be either
blocking or non-blocking. As shown here it is blocking,
although a simple change could make it non-blocking. The
problem is that Special does rot allow this either/or.)

DEFINITIONS
Packet p IS p INSET Network(da, pcol);

EXCEPTIONS
RESOURCEERROR
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EFFECTS
"Network(da, pcol) - Network(da. pcol) - {p};

OFUN Send-to-net(Packet p);
$(This function places a packet into the set of packets for

delivery to a particular destination address and
protocol.)

EXCEPTIONS
RESOURCE ERROR

EFFECTS
'Network(p.da, p.pcol) = Network(p.da, p.pcol) + (p};

OFUN Dup-pkt(Mset n);
$(This function is "implemented" by the network. It
duplicates an arbitrary packet.)

DEFINITIONS
Packet p IS p INSET n;

EFFECTS
.n - n + {p);

OFUN Dro~pnkt(Iset n);
$(This function is "implemented" by the network. It removes

a packet from those to be delivered.)
DEFINITIONS

Packet p IS p INSET n;

EFFECTS
"n = n - (p);

ENDMODULE

6. INTERNET PROTOCOL IN DETAIL

The above specification is only an interface specification.

It would be adequate for a user of the IP interested only in sending

datagrams; a user who did not need to use detailed knowledge about the

implementation to improve efficiency. It is not an internal

(implementation) specification. In operating system desirn an

interface specification is often sufficient since two operatinr systems

which present the sane user interface will allow the same program
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to run; the internal details are immaterial. In the realm of

protocols, however, the internal specification is important as

different implementations must be able to communicate (i. e. they htust

have "compatible" implementations).

Different networks may have different network access protocols; the

implementation must provide for some means of moving datagrams between

them. This is the responsibility of a network gateway. A gateway is a

point where two networks in the catenet are interconnected. In the ARPA

internet experiment a gateway [Str79] has three responsibilities:

internet routing, fragmenting (but not reassembling) a datagram which is

too large to pass through the net to which it is being routed and

encapsulating and decapsulating internet datagrams with respect to the

network access protocols of the nets being interconnected.

A gateway can be thought of as consisting of two halves - one at

the entering point and one at the exit point. In this model each host

contains half of a gateway. A gateway connecting more than two networks

seems contradictory when drawn that way, since it contains more than two

halves, but that is a function of the point of view - there is no

contradiction.

The user interface specification deals completely with abstract

objects (i.e. addresses are character strings). The detailed

refinement has a series of abstract machines which provide the

functionality to run interface specification on a network access

protocol.
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A trial deconposition is given In figure 7. The II Is decomposed

into four layers: Hlost-Host virtual, lost-Host physical, Net-Net, and

Net-Access. The first of these is the machine shown in the previous

section. It provides an interface to those higher level protocols which

require nothing more than a datagram service. The next lower abstract

machine provides the necessary translations for the virtual datagram

layer to be implemented. It can also be used as a visible interface by

protocols which are interested in having some control over the

transmission of its datagrams. The Net-Net layer is responsible for

fragmentation and internet routing. The Net-Access layer is the

abstract machine interface which the IP runs on.

H H

H-H Virt I ---------------------------------

Virtual to physical binding

11-H Phys I- ------------------------

Internet Routing

Net-Net I----------- G -------- G ... C ------------

Fragmentation

Net-Access I--N---N---N--N1---N ... ... N ------- N

Fig. 7

This decomposition, though simple and straightforward, has a

problem -- it requires that the Net-Net layer hide fragmentation from

the hosts. To do this would require that datagrams be fragmented and

reassembled on a network by network basis. The IP does not do thiE for

two reasons. If gateways had to do reassembly all fragments of a
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datagram would have to leave a net via the same gateway which would

prevent load-sharing between gateways at the datagram level and

requiring the gateways to do reassembly would require the gateway to be

larger and more complex than not doing so. (It should be noted that the

PUP architecture, using different design criteria, came up with a design

which did require gateways to do reassembly. The above decomposition

would probably be quite appropriate for the PUP architecture.)

Attempting to rearrange the levels to fit the IP led to the

discovery that the initial guess fortuitiously placed the internet

routing decision correctly with respect to fragmentation. It is not a

free decision because, if a return route option (RRO) is present in the

IP header, a datagram which did not need fragmenting before the RRO was

updated can need fragmenting after the RRO is updated. After a few

trials the decomposition in figure 8 was arrived at and used.

H H

H-H Virt I ------------------

Virtual to physical Virtual to physical
binding bincing

H-H Phys ----------- --------- I

Internet Routing Reassembly

Net-Niet I -- G - G ...

Fragmentation

Net-Access I--N---N----N--N---N ---- N ... N------ ----- -

Fig. 8
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The implementation was divided into ten modules distributed among

four levels. The modules at each level are shown in figure 9.

Level 4: Inet-send Inet-recv Virt-Net

Level 3: Phys-send Phys~recv Phys-Net

Level 2: Inet-rt Reassemble Phys-Net

Level 1: Make-frag Recv-frag Phys~Net

Fig. 9

a. Module: Phys-send

This module provides physical representation for the virtual

objects defined in the Inet-send module. It also includes the IP header

fields omitted from. the Inet-send.

I'ODULE Phys-send

TYPES

Quartet: (0..15};
Byte: (0..2-Byte-size-l};
Net-id: Byte;
Phys-addr: {VECTOR-OF Byte p I LENGTH(p) - Addr-size};
Inet-addr: STRUCT-OF(Net-id net; Phys-addr a);
Half-wd: {O..2-(Word-size/2)-1};

Flag: BOOLEAN;
Data: VECTOR-OF Byte;
Char-str: VECTOR-OF CHAR;
Pkt-id: DESIGIATOR;
Type-of-serv: STRUCT~OF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);
Packet: STRUCT~OF(Quartet v; Type-of-serv tos; Byte ttl, pcol;

Inet-addr sa, da; Data o, d);

PARA IETERS

Quartet Version;
SET-OF Net-id Known-nets;
SET-OF Net-id Feiphbors;
SET-OF Inet-addr Source-addrs;
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Inet-addr Detault-source-addr;

SET-OF Byte Non-dup-optn;

DEFINITIONS

BOOLEA11 Invalid-net(Iiiet-addr da) IS
NOT(da.net INSET Kno.n-nets);

$(The IP is not responsib'le for interpreting network
specific addresses. All it can check is that the network
field addresses a network it can knows about.)

BOOLEAN Invalid-sa(Inet-addr sa) IS NOT(sa INSET Source-addrs);

BOOLEMI Invalid-pkt(Pkt-id id) IS 'i)T(id INSET Current-idso);

EXT ERNALREFS

FROM Phys-net:
OFUN Send-to-net(Packet P);
INTEGER Byte-size; $(Currently 8 bits)
INTEGER Addr-size; $(Currently 3 bytes)
INTEGER Word-size; $(Currently 4 bytes)

FROM Inet-rt:
INTEGER Max-inet-pkt; $(Currently 2**16-1 bytes)
INTEGER Max-inet-hdr; $(Currently 15 words, 60 bytes)
INTEGER flin-inet-hdr; $(Currently 5 words, 20 bytes)

ASSERTIONS

Default source-addr INSET Source-addrs;

$(This assertion bounds the size of the IP header)
FORALL Pkt-id id:
LENTGTH (Option-field (id)) <- Max-inet-hdr - '!in-inet-hdr;

$(This assertion bounds the size of an IP datagrarn.)
FORALL Pkt-id id:
Min-inet-hdr + LEIITII(Optionfield(id)) + LENCTPO!!sg(id))
<- Zaxinet-pkt;

FUNCTIONS

VFUN Type-of-service(Kt-id id) -> _vreof-serv tos;

INITIALLY tos - ?

V'Ffl. Tireto-live(Pkt-id id) -> IrTECEP. ttl;
$(Tire mieasured in seconds)
1;IDDE I;
INITIALLY ttl ?;
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V)IJ! Protocol(Pkt-id id) -> Quartet p;
H IDDEN ;
INITIALLY pcol - ?

VFUN Source-addr(Pkt-id id) -> Inet-addr s;
HIDDEN ;
INITIALLY sa - Default-source-addr;

VFIJN Dest-addr(Pkt-id id) -> lnet-addr d;
HIDDEN ;
INITIALLY da -?

VFL~N Option-field(Pkt-id id) -> Data opt;
HIDDEN1;
INITIALLY o - ?

VFUN Msg(Pkt-id jd) -> Data mn;

PIDDEN ;
INITIALLY r

VEFUN Packetsin-prog(Pkt-id id) ->Packet P;
EXCEPTIONS

linvalid-pkt (id);

DERIVATION

STRUCT (Version,
Type-of-service~id),
Time-to-live(id),
Protocol~id),
Source-addr(id),
Dest-addr(id),
Option-field(id),
A sg (id) );

VFUN Curret-ids()- SFT-OE Pkt-id id;
IrDDEN?:
INI1TIALLY id ={}

OVFUN Make-pkt()- Pkt-id id;
EFFECIIS

id - NEVI(Pkt-id);
'Current-ids() - Current-ids() UNION {id);

OFUN Set-tos(Type-of-serv tos; Pkt-id id);
$(The descripti',n places no restriction on setting, the fields

of the type of service. In the future it ray be necessary
to add sor~e checking on the use of the priority field.)

EXCEPTIONS
Invalid pkt (id);

EFFECTS
'Type-of-service(id) tos;
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$(Time measured in seconds)
EXCEPTIONS

tnvalid-pkt (id);

EFFECTS
'Tine-to-live(id) -ttl;

OFLIN Set-protocol(Quartet pcol; Pkt-id id);
EXCEPTIONS

Invalid-pkt (id);

EFFECTS
'Protocol(id) -pcol;

OFUN Set-source-addr(Inet-addr sa; Pkt-id id);
EXCEPTION S

Invalid-pkt (id);
Invalid-sa (sa);

EFFECTS
'Source-addr(id) - sa;

OFUN Set-dest-addr(Inet-addr da; Pktjid id);
EYCEPT IONS

Invalid-pkt (id);
Invalid-net(da);

EFFECTS
'Desr-addr(id) - da;

OFUN Set-optons(lata opt; Pkt-id id);
EXCEPTIONS

Invalid-pkt(id);

EFFECTS
'Option-field(id) -opt;

OFUN SetIthsg(Data m; Pkt-id i);
EXCEPTIOYS

Invalid-pkt (id);

EFEMsg(id) - ri;

OFUV Destroy(Pkt-id id);
$(See com~ment in Inet-send module)
EXCEPTIONS

Invalid-pkt (id);

EFFECTS
'Current-ids() Currentlids() DIFF {id};
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CEUN Dispatch(Pkt-id id);
EXC E PT ION S

Invalid-pkt (id);

EFFECTS
'Current-ids() - Current-ids() r1IlF (id);
EFFECTS-OF Send-co-net(Packets-in-pro',(id));

END-MODULE

b. Module: 'Phys-recv

This cvodule is the counterpart of the Phys-send module on the

receive side.

MO'ULF Phys-recv

TYPES

Quartet: {0-.15);
Byte: {O..2-Byte-size-1};
Net-id: Byte;
Phys-addr: {VECTOR-OF Byte p I LENGTH(p) = Addr-size};
Inet-addr: STR.UCTOF(Net-id net; Phys-addr a);
Half-wd: (O..2Nv-jord-size/2)-1);
Flae: BOOLEAN,;
Data: VECTOR-OF Byte;
C'-1arstr: VECTOP-OF CHAR;
Pkt-id: DESTCNA'm1'R;
Type-of-servt STRUCT-OF(CHAR precedence; FlaQ strn;

CHAP, reliability; Flag svsr, speed);
Packet: STPUCT-OF(Quartet v; Type-of-serv tos; Byte ttl, pcol;

Inet-addr sa, da; Data o, d);

PA RM !TER S

Quartet Version;
SET-OF tnet-addr Dest-addrs;

DFFT I tT ONS

POOLEAN Invalid-pkt(Pkt1.d id) IS NOT(id IN:SET Current-idso);

ROOLFAN Invalid-ia(Inet-addr da) IS NOT(da INSET Dest-addrs);
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EXT EINALR EFS

FROM Phys-net:
OVFUN Remove-fm-net(Inet-addr da) -> Packet p;
INTECER Byte-size; $(Currently 6 bits)
INTECER Addr-size; $(Currently 3 bytes)
INTEGER Word-size; $(Currently 4 bytes)

FROM Inet-rt:
INTEGER Max-inet-pkt; $(Currently 2**16-1 bytes)
INTEGER Max-inet-hdr; $(Currently 15 words, 60 bytes)
INTEGER Min-inet-hdr; $(Currently 5 words, 20 bytes)

ASSERTIONS

FORALL Pkt-id id:
LENGTHCOption-field(id)) <- Itax-net-hdr - !in-inet-hdr;

FORALL Pkt-id id:
Min-inet-hdr + LEIICTH(Option-field(id)) + LENGTH(Msg(id))
<- Max-inet-pkt;

FLTNCTIONS

VFUN Typeof-service(Pkt-id id) -> Typeof-serv t;
EXCEPTIONS

Invalid-pkt (id);

DERIVATION In-packets(id) .tos;

VFUN1 Time-to-live(Pkt-id id) -> INTEGER t;
EXCEPTION S

Invalid-pkt (id);

DERIVATION In-packets(id).ttl;

VFUN Protocol(Pkt-id id) -> Quartet p;
EXCEPT ION S

Irivalid-pkt (id);

DERIVATION In-packets(id) .pcol;

VFUN Source-addr(Pkt-id id) -> Iret-addr s;
EXCEPTIONS

Invalid-pkt (id);

DERIVATION In-packets(id).sa;
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VFUN Dest-addr(Pkt-id id) -> Inet-addr d;

EXCEPTIONS
Invalid-pkt (id);

DERIVATION In-packets(id) .da;

VFUN Option-field(Pkt-id id) -> Data opt;

EXCEPTIONS
Invalid-pkt (id);

DERIVATION In-packe ts (id) .o;

VFUN Msg(Pkt-id id) -> Data m;

EXCEPTIONS
Invalid-pkt (Id);

DERIVATION In-nackets(id).d;

VFUN In-packets(Pkt-id id) -> Packet p;

HIDDEN;

INITIALLY p - ?;

VFUN Current-ids() -> SET-OF Pkt-id id;

HIDDEN;
INITIALLY Id - { 1;

OVFUN Pecv-pkt(Inet-addr da) -> Pkt-id id;

EXCEPTIONS
Invalid-da (da);

RESOURCE-ERROR;

EFFFCTS
id - NEW(Pkt-id);
'Current-ids() {id} UNIOE Current-idso;
'In-packets(id) = EFFECTS-OF Remove-fm-net(da);

END-MODULE

c. Module: Phys-net

At this level the network is viewed as a collection of packets

bound for a destination. The packets are not segregated by the

particular higher level protocol to which they are directed.
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M!ODULE Phys-net

TYPES

Byte: (O..2-Byte-size-I};
Data: VECTOR-OF Byte;
Net-id: Byte;
Phys-addr: (VECTOR-OF Byte p I LENGTH(p) - Addr-size);
Inet-addr: STRUCT-OF(Net-id net; Phys-addr a);
Half-wd: (O..2-(Word-size/2)-);
Mset: HULTISET-OF Packet
Pkt-id: DESIGNATOR;

Type-of-serv: STRUCT~OF(CHAR precedence; Flag strm;
CHAR reliability; Flag svsr, speed);

Inet-hdr: STRUCT~OF(Version v; Quartet ihl; Type-of-serv tos;
Half-wd totlin, indent; Flag df, mf; Byte ttl, pcol;

Inet-addr sa, da; Data opt);
Packet: STRUCT~OF(Inet-hdr ih; Data msg; BOOLEA check-sum);

PARAMETERS

INTEGER Byte-size; $(Currently 8 bits)
INTEGER Addr-size; $(Currently 3 bytes)
INTEGER Word-size; $(Currently 4 bytes)

FUNCTIONS

VFUN Network(Inet-addr da) -> Mset p;
$(The network is the set of packets bound for a destination

address.)
HIDDEN;
INITIALLY p - { };

OVFUN Remove-rm-net(Inet-addr da) -> Packet p;
LET p INSET Network(da);
EXCEPT ION S

Empty(da);

EFFECTS
'Network(da) - Network(da) - {p);

OFUN Send-to-net(Packet p);
EXCEPTIONS

Full(p.da);

EFFECTS
'Network(p.da) - Network(p.da) + {p};

OFLUN Dup-pkt(Addr da);
LET p INSET Network(da);
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EFFECTS
"Network(da) - Network(dn) + {p);

OFUN Drop-pkt(Inet-addr da);
LET p INSET Network(da);

EFFECTS
*Network(da) = Network(da) - {p);

OFUN Modify-pkt(Packet p);
$(Since the IP only checksums the internet header modifying

the data has no visible effect as far as IP is concerned.
The second clause of the EFFECTS paragraph is there since
Special explicitly declares that all values not mentioned

in an EFFECTS section are not modified.)

EFFECTS
'p.ih - p.fh -> °p.check-sum = FALSE;
"p.msg - p.nsg OR "p.msg -- p.msg;

ENDHO DULE

d. Module: Inet-rt

This module contains the functions to update the routing options of

the IP. Since the RPO is in terms of the net the datagrar is entering

it must have the necessary functions to decide which net this will be.

This module also handles the other options of the header.

NODULE Inet-rt

TYPES

Quartet: {0..15);
Byte: {O..2-Byte-size-I};
Flag: BOOLEAN;
Net-id: Byte;

Data: VECTOR-OF Byte;
Phys-addr: {VrCTOR~OF Byte p I LENGTH(p) Addr'size};
Inet-addr: STRUCT~OF(Net~id net; Phys-addr a);
Half-wd: {O..2G(ord-size/2)-1};
Pkt id: DESIGNATOR;

- 67 -

• . .... .. .... i . ' " " -7



Type-of'serv: STRUCT~OF(CHAR precedence; Flag strm;
CHAR reliability; Flag svsr, speed);

Route: (VECTOR-OF Inet-addr r I LENGTH(r) < 10);
Route-opt: STRUCT~OF(Byte opt-type, length; Route rt);
Sec-opt: STRUCT~OF(Byte opt-type, lenrth, sec-lvl, tcc);
Stream: {VECTOR-OF Byte s I LENCT|I(s) - Stream-id-in};
Stream-opt: STRUCT~OF(Byte opt-type, length; Stream s);
Timest: {VECTOR-OF Byte t J LENGTH(t) - Tirest-ln};
Tiwest-opt: STRUCT'OF(Byte opt-type, length; Timest t);

$(It is unclear how to handle multiple source route, return
route or security options. The protocol description
neither prohibits such packets nor tells what action to
take if one arrives. The specifications do not allow such
packets.)

Packet: STRUCT~OF(Quartet version, ihl; Type-of-serv tos;
Half-wd totln, indent; Flag df, mf; Byte ttl, pcol;
Inet-addr sa, da; Route-opt rro, sro; Sec-opt sec;
SET-OF Stream-opt str; SET-OF Timest-opt time; Data d);

PARAMETERS

Inet-addr Net-addr; $(Address for RRO)
INTEGER 11ax-inet-pkt; $(Currently 2**16-1 Bytes)
INTEGER Max-inet-hdr; $(Currently 60 Bytes)
INTEGER 1in-inet-hdr; $(Currently 20 Bytes)
INTEGER Stream-idlin; $(Currently 2)
INTEGER Timestlin; $(Currently 4)
SET-OF Byte Known-nets;
SET-OF Byte Valid-tiest-opts; $(Currently Satnet and

Internet)
Byte Source-route;
Byte Return-route;

DEFINITIOUS

BOOLEAN Unknown-net(Net-id net) IS NOT (net INSET Knownnets);

EOOLEAII No-rr-opt(Packet p) IS p.rro - ?;

BOOLEAN Empty-sr(Route-opt r) IS LENGTH(r.rt) - 0;

BOOLEAN Notempty(Route-opt r) IS LENCTH(r.rt) -- 0;

BOOLEAN Not-sro(Route-opt r) IS
NOT (r.opt-type - Source-route);

BOOLFAn[ Not-rro(Route-opt r) IS
NOT (r.opt-type - Return-route);

- 68-



BOOLEANI Invalid-ts-opt(Timest-opt t) IS NOT(t.opt-type INSET
Valid-tirest-opts);

IMOOLEAN Invnlid-pkt(Pkt-id Id) IS NoT(id INSET Cirrentidso);

EXT ERNALREFS

FROM~ Phys-net:
INTECER Byte-size; $(Currently 8)
INTEGER Addr-size; $(Currently 3)
INTEGER Word-size; $(Currently 4)

FUNCTIONS

VFUN Packets(Pkt-id id) -> Packet p;
EXCEPTIONS

Invalid-pkt (id);

INITIALLY p -?

VFUN Current-ids() -> SET-OF Pkt-id id;
HIDDEN;
INITIALLY id - {}

VFUN Next-dest(Pkt-id id) -> Inet-addr d;
DEFINI TIONS

Route-opt r IS Packets(id).sro;

EXCEPTIONS
Invalid-pkt (id);
Fmpty-sr(Packets(id).sro);

DERIVATIONT r.rtf(r.length -2)/Word-size];

OFUN Update-sr(Pkt-id id);
EXCEPT tIONS

Invalid-hkt (id);
Em-pty-sr(Packets(id) .sro);

EFFECTS
'Packets(id).da - Nlext-dest(id);
'Pacl-ets(ia).sro.1enpth -Pacl:ets(id).sro-len! th -!'ord-size;

'Packets(id).ihl = Packets(id).ihl - 1;
'Packets(id).totln -Packets(id).totln - Word-size;

M(ote: the header lerwth is measured in words whereas the
total lenpth is in octets.)
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OFUN Urpdat'rr(Pkt-id id);
7FCEPTIONS

Invalid-hkt (id);
florr opt (Packets (id))
RESOURCE-ERROR;

EFFECTS
'Packets(id).totln -Packets(id).totln + Word-size;
'Packets(id).ihl -Packets(id).ihl + 1;
'Packets(id).rro-lenght - Packets(id).rro-length + Word-size;
'Packets(id).rro.rt[(Packets(id).rro.length -2)/Word-size)

-Net-addr;

OFUN Set-sro(Pkt'id id; Route-opt sr);
EXCEPTIONS

Not-sro(sr);

EFFECTS
PFackets(id).sro-sr

OF01 Request-rro(Pkt-id id; Route-opt rr);
EXCEPTIONS

Invalid-pkt (id);
!fotrro(rr);
Not-erpty(rr);
RESRCEERROR;

EFFE.CTS
'Packets(id).rro = rr;

OFUNh Set-sec'opt(Pkt-id id; Sec-opt s);
EXC EPT IONS

Invalid-pkt (id);
RESOURCE-ERROR;

EFFECTS
'Packets(id).sec = s;

OFUN Set-str-opt(Pkt-id id; Strear'Thpt s);
EXCEPTIONS

Invalid-pkt (id);
PESOURCE-ERROR;

EFFECTS
'Packets(id).str -Packers(id).str UNION (s);

OFUV Set-tire-opt(Pkt-id id; Timest-opt t);
EXCEPTIONS

Invalid-pkt (id);
Invalid ts-opt t);
PRESORCE'ERROR;
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EFFECTS
'Packets(id).tlm, - Pnckers(ld).tire U.ION {t};

$(The next two functions provide the interface level of the
gateway to gateway protocol [Str79]. They are responsible for
maintaining and updating routinp information for the hosts
within the internet.)

VFUN Next-net(Net-id dn; Type-of-serv tos) -> Net-id n;
HIDDEN;
INITIALLY n - ?;

OFUN Update-rt-info(Net-id dest-net, nxt-net; Type-of-serv tos);
EXCEPTIONS

Unknown-net (dest-net);
Unknown-net (nxt ~net);

EFFECTS
"Next-net(dest-net, tos) =mnxt-net;

END-MOrLuE

e. Module: Reassemble

This module maps datagram frapments into complete datagrans. Its

purpose is to present only "whole" datagrams to the Recv-phys level.

ODULE Reassemble

TYPES

Quartet: {0..15};
Byte: (0..2"Byte-size-};
Offset: (O..Nax-offset};
Net-id: Byte;
Phys-addr: {VECTOR-OF Byte p I LENCT(p) - Addr-size};
Inet-addr: STPUCT~OF(et-id net; Phys-addr a);
Flag: BOOLEAN;
Half-wd: {0..2"(Word-size/2)-l};

Data: 'ECTOR~OF Byte;
Type-of-serv: STRUCT~OF(CHAR precedence; Flag strm;

CHAR reliability; Flap svsr, speed);

Packet: STRUCT~OF(Quartet v, ihl; Type-of-serv tos;
Half-wd totln, ident; Flag df, mf; Offset fo;

Byte ttl. pcol; Inet-addr sa, da; Data opt, d);
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PARANETERS

Quartet Version;

IN4TEGER flax-offset;
SET'OF Byte Known-pcols;
SET-OF Byte Known-nets;

DEFINITIONS

BOOLEAN Incompleteedatagram(Half-wd id; Offset f; Byte peal;
Inet-addr sa, da) IS NOT Pkt-complete(id, pcol, sa, da);

BOOLEAN Bad-pcol(Packet p) IS NOT (p.pcol INSET Known-pcols);

BOOLEAN Not-frag(Packet p) IS p.wf - FALSE AND p.fo - 0;

BOOLEAN No-last-frag(Half-wd id; Byte peal; Inet-addr sa, da)
IS NOT (EXISTS Offset f: Iore-frags(id, f, peal, sa, da)

TRUE);

EXCTERNALREFS

FROM Phys-net:
INTEGER Byte-size; $(Currently 8)
INTEGER Addr-size; $(Currently 3)
INTEGER Word-size; $(Currently 4)

FROM Inet-rt:
INTEGER ?in-inet-hdr; $(Currently 20 Bytes)

FUNCTION S

MFIT Header-ln(Half-wd id; Offset f; Byte peal; Inet-addr sa, da)
->Quartet ihi;

HIDDEN;
DEFINITIONS

INTEGER 1 IS LENGTH(Options(id, f, peal, sa, do));

DERIVATION Min-inet-hdr + l/Word-size;

VFUN Total-ln(Half-wd id; Offet byte peal; Inet-addr sa, da)
-INTECER i;

HIDDEN;
INITIALLY i - 0;

$(The following four VFUNs have no counterpart in the reassemibled
datagram. The description gives no method to derive them fromr
the fragments of a datagram nor are they returned at the
interface to the IP.)
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VFUN Ident(Half-wd id; Offset f; Byte pcol; Inet-addr sa, da)

HIDDEN; 
INTEGER i;

INITIALLY i 0;

VFUN tiore-frags(llalf-wd id; Offset f; Byte pcol; Inet-addr sa, da)
-> BOOLEAN mn;

HIDDEN;
INITIALLY mn-1

VFUN Frag-offset(Half-wd id; Offset f; Byte pcol; Inet-addr sa, da)
->INTEGER i.;

HIDDEN;
INITIALLY i - 0;

VFUN Timeto-live(Half-wd id; Offset f; Byte pcol; Inet-addr sa. da)
-INTEGER t;

HIDDEN;
INITIALLY t -0;

VFUN Options(Half-wd id; Offset f; Byte pcol; Inet-addr sa, da)
->Data o;

HIDDEN;
INITIALLY o a ?

VFUN Msg(Half-wd id; Offset f; Byte pcol; Inet-addr sa, da)
->Data mn;

HIDDEN;
INITIALLY ?;

VFUN Checksur.(Hlf-wd id, Offset f; BvtL- pcol; Inet-addr sa, da)
-INTEGER c;

HIDDEN;
DERIVATION ?;

VFUN4 Frag-blk-table(Half-wd id; Byte pcol; Inet-addr sa, da;
INTEGER blk no) -> BOOLEAN in;

$(The table keeps track of which pieces of a datagram
have been received)

HIDDEN;
INITIALLY ?;~

MIUN Pkt-complete~lialf-wd id; Byte pcol; Inet-addr sa, da)
->BOOLEAN r

DEFINITIONS
INTEGER Max-blk IS LET INTEC.ER f

Ifore-frags(id, f, pcol, sa, da) -FALSE

IN Frag-offset(id, f, pcol, sa, da) +

Total-ln(id, f, pcol, sa, da) -

Header-ln(id, f, pcol, sa, da);
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EXCEPTIONS
No-lastfrap(id, pcol, sa, da);

DlERIVATION FORALL INTEGER i 1 0 < i AND i <- Hox-blk:
Frapblk-table~id, pcol, sa, da, i) -TRUE;

$(The follow.ing functions present the visible interface of this
module. They make available the fields of the datagram after
reassembly. The R preceeding the name indicates that it is for
a reassembled datagram.)

VFUN R-hdr-ln(Half-wd id; Byte pcol; Inet-addr sa, da)
->INTEGER ln;

DEFINITIONS
INTEGER 1 IS LENGTH(R-options(id, pcol, sa, da));

EXCEPTIONS
Incomplete-datagram(id, pcol, sa, da);

DERIVATION Min-inet-hdr + l/1tord-size;

VFLUN R-type-ofservice(Half-wd id; Byte pcol; Inet-addr sa, da) -

Type-of-serv tos;
EXCEPTIONS

Incomplete-datagrain(id, pcol, sa, da);

INITIALLY tos - ?

VFUN R-total-ln(Half-wd id; Byte pcol; Inet-addr sa, da) ->INTEGER 1;
EXCEPTIONS

Incomplete-datagram(id, pcol, sa, da);

INITIALLY 1 - ?

VFUN R-options(Half'wd id; Byte pcol; Inet-addr sa, da) -)Data o;
EXCEPTIONS

Incomplete-datagram(id, pcol, sa, da);

INITIALLY o - ?

VFUN R-data(Half-wd id; Byte pcol; Inet-addr sa, da) -)Data M;
EXCEPTIONS

Inconplete-datagran(id, pcol, sa, da);

INITIALLY m - ?

OFUN Reas-frag(Packet p);
DEFINI1TIONS

INTEGER st IS 8*p.fo;
INTEGER fn IS st + p.totln - p-ihl;
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EXCEPTIONS
Notffrag (p);

Bad-pcol (p);

EFFECTS
'R-type-of-servce(p.ident, p.pcol, p.sa, p.da) - p.tos;
p.fo - 0 ->

°R-options(p.ident, p.pcol, p.sa, p.da) = p.opt;
FORALL INTEGER il st <- i AND i <- fn:
'R-data(p.ident, p.pcol, p.sa, p.da) [i] - p.d[i-stJ;
FORALL INTEGER il p.fo < i AND i < (p.totln/8 - p.fo):

"Frag-blk-table(p.ident, p.pcol, p.sa, p.da, i) - TRUE;

$(The total lenght must be divided by eight because the

fragment offset is measured in units of eight bytes.)

END TODULE

f. Module: Send-frag

This module implements fragmentation at the source end. This

module provides a method of fragmenting datagrams so that unique

reassembly can take place. Datagrams are identified by four items: the

protocol above the IP which is sending ther, the source address,

the destination address and the identification field. Any two

datagrams with these fields identical are considered identical by

the IP. To distinguish between fragments of the same datagram the

fragment offset and total length field (or more fragments field) are

needed. Since this would require the next level to keep track of

offsets, unique identifiers are generated. The next level can then

simply ask for the identifiers which correspond to a given datagram.

MODULE Sendf rag

TYPES

Quartet: {0..15);

Byte: (O..2-Byte-size-};
Half-wd: {O..2-(0lord-size/2)-};
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Offset: {O. .lax-offset};

Net-id: Byte;
Flag: BOOLEAN;
Frag-des: DESIGNATOR;
Local-addr: {VECTOR-OF Byte a I LENCT1I(a) - Addr-size};
Inet-addr: STRUCT-OF(et'id net; Local-addr la);
Data: VECTOR-OF Byte;
Type-of-serv: STRUCT~OF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);
Packet: STRUCT-OF(Quartet v, ihl; Type-of-serv tos;

Half-wd totln, ident; Flag df, mf; Offset fo;
Byte ttl, pcol; Inet-addr sa, da; Data opt, d);

$(Although the order of fields in a structure is irrevelent
as far as SPECIAL is concerned they are ordered here as
actually implemented to make the mapping to the implementation
as straight forward as possible.)

PARA IFTERS

Quartet Version;
INTEGER Max-frag;
INTEGER Max-offset;
SET-OF Byte Known-pcols;
SET-OF Byte Supplying-ids;
SET-OF Net-id Known-nets;
SET-OF Net-id Neighbors;

DEFINITION S

BOOLEAN Unknown-net(Net-id n) IS NOT(n INSET Known-nets);

BOOLEAN Poor-pcol(Byte p) IS NOT(p INSET Supplyinp-ids);

BOOLEAN Dfrset(Packet p) IS p.df - TRUE;

BOOLEAN Too-big(INTECER p) IS p > Max-frag;

BOOLEAN Bad-start-pos(INTEGER i, J) IS (i ,OD Byte-size -0)
OR (i >- J);

BOOLEAN Bad-end-pos(Packet p; INTECER i) IS (i NOD Bvte-size -0)

AND (p.dfi+l] -- ?);
$(All fragments except the last one rust be a multiple of
eight in length.)

EXr ERNALR EFS

FROM Phys-net:
OFUN Send-to-net(Packet p);
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INTECER Byte-size; $(Currently 8)
11TEGER Addr-size; $(Currently 3)
INTEGER Word-size; $(Cu.rrently 4)

FROM Inet-rt:
INTEGER t*ax-inet-hdr; $(Currently 60 bytes)
INTEGER infinet-hdr; $(Currently 2C bytes)

ASSERTIONS

FORALL Packet p: LFN'GTH(p.opt) IOD Uord-size - 0;

FORALL Packet p: LF!YCTH(p.opt) <= Ilax-inet-hdr - Yin-inet-hdr;

FORALL Packet p: p.df = TRUE => p.rif = FALSE A!D p.fo - 0;

$(This is the intent of the current description although it
is not explicitly stated as such)

FUNCTIONS

VFUN F~Header~In(Frag-des id) -> Quartet ihl;
HIDDEN ;
DEFINITIONS

INTEGER I IS LENTH(F-Options(id));

DERIVATION Nin-inet-hdr + i/,ord-size;

VFUN F-Tvpe-of-service(Fr':. ues id) -> Typehof-serv L;
KIDDEN ;
INITIALLY t =

VFUN F-Total-in(Frap~des id) -> Half-wd i;
VIDD EN;
INITIALLY i - 0;

V'FUN F~Ident(Fraw~des id) -> Half-wd i;
HIDDEN;
V.ITIALLY i - C;

"TI', F oc-frap(Frar-des id) -> O;rcLrA: df;

r .. r -des id' -> BOOL A; E.V ;

" ii II I I - - l l l



VFUfN F-Frag-offset(Frag-des id) -)half-wd 1;
HIDDEN;
INITIALLY i - 0;

VFUT! F-Tietolive(Fra-,des id) ->Byte t;

HIDDEN;
INITIALLY t - 0;

VFUN F-Protocol(Frag-des id) -> Byte p;
V.IDDEN;
INITIALLY p=0

VFTUN F-Source-addr(Frag-des id) -> Inert-addr s;
HIDDEN;
INITIALLY s -=?

VFUN F-Dest-addr(Frapgdes id) -> Inet-addr d;
HIDDEN;
INITIALLY d - ?

VFU1N F-Options(Frag-des id) -> Data o;
HIDDEN;
INITIALLY o - ?

V'FUN F'Iisg(Frag-des 4.d) -> Data m;
HIDDEN;
INITIALLY mn - ?

VFUN F-Checksum(Frag-des id) ->Half-wd c;
HIDDEN;
DERIVATION ?;

VFUU Fragments(Frag-des id) -)Packet p;
HIDDEN;
DERI VATION

STRUCT (Version,
F-Header-ln(id),
F-Type-of-service (id),
F~otal-ln(id),
FlIdent (id),
F-Dontfrag(id),
F'1o re-f rags (id) ,
F-Frag-offset(id),
F-Tine-t o-live (id),
F-Protocol (id),
F-Source-addr(id),
F-Des -addrfid),
F-Options (id),
F'Ihsg (id),
F-Checksum(id));
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OFUN Dispatch(Frag-des id);
EXCEPTIONS

RESOURCE-ERROR;

EFFECTS
EFFECTS-OF Send-to-net(Frarments(id));

VFUN Frags-ofpkt(Half-wd id; Byte pcol; Inet-addr sa, da)
-SET-OF Frag-des fd;

EXCEPTIONS
Poor-pcol(pcol);
Unknown-net(sa.net);
Unknown-net (da .net);

IFITIALLY fd ={ );

OVFUN Fragment(Paicket. p; IN!TEGER srt-pos, end-pos) -> Fraq-des id;
$(In the I? dt:r-ipt4.on the fragmentation algorithm is given

as an operarional definition. This specification embodies
the sarre concent as an abstract nachine definition.)

EXCEPTION S

Bad-starL-pu6(srt-hos, end-pos);
Bad-end-hos(n, end-pos);
Too-big(end-pos - srt-pos);

EFFECT S
id - NE(Frarq-des);
'Frags-of-pkt(p.ident, p-pcol, p-sa, p-da)-

Fraps-of-pkt(p.ident, p.pcol, p-sa, p.da) UN,,*ION fid);
'F'vne-of-service(id) -= t-
'F-dent(ld) -p-idchnt;
$(The don't frag~ment flap need not be set as the initial value

i'; cori-ec't. -iPe sane is true for the more fragm-ents flaq,
for be last fragment.)

end-pos -- LENCTT1(p-d) -> 'F-More-frags(id) - TRUE;
'FFra-.,cffset(id) srt-pos/(2*Word-size);

'FTime-to-ive(id) =p-ttl;
'F-Protocol(id) - p.pcol;
'F-Source-addr(id) - p-sa;
'Fflpst-addr(id) - n.da;
srt-pos - 0 => 'F-0pt ions id)

Fir'rfrap-opts(p.ident, p-pcol, p-sa, p-da);
srt-pos -- 0 -> 'F-Options(id) -

All-frag-opts(p-ident, p-pcol, p.sa, p.da);
1'T71sp(id) - VECTOP (FOR i FROtN srt-pos TO end-pos: p.d~i]);

FND M0 DULF
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g. Module: Recv-frng

Although this module is the counterpart of the rodule Send-frip, it

is much simpler because it is not responsible for reassembling the

fragments created by Send-frag. Because datagravs are not reassem'bled

at this level, the problem of distinguishing betwreen a datagrar. and its

first fra.-ment does not reoccur here.

MODULE Recv-frag

TYPES

Quartet: {0. .15);
Byte: {O..2-Byte-size-1};
Half-wd: {O..2-(Uord-size/2)-1);
Net-id: Byte;
Offset: (O..Ntax-offset);
Flag: BOOLEAN;
Frag-id: DESIGNATOR;
Local-addr: (VECTOR-OF Byte a ILENGrH(a) -Addr-size);
Inet-addr: STRUCT-OF(Net-id net; Local-addr la);
Data: VECTOR-OF Byte;
Type-of-serv: STRUCT'0F(CHAR precedence; Flap strn;

CHAR reliability; Flag svsr, speed);
Packet: STRUCT-OF(Quartet v, ihl; Type-of-serv tos;

Halfvwd totln, indent; Flag df, mf; Offset fo;
Byte ttl, pcol; Inet'addr sa, da; Data opt, d);

PARAMETER S

Quartet Version;
INTEGER Max-of fset;
SET-OF Byte Knownpcols;
SET-OF Byte Know.n-nets;

DEFINITIOITS

BOOLEJ%11 Invalid-id (Frag-id fd) IS NOT(fd INSET Current-idso);

EXTERIIALREFS

FROM Phys-net:
OVrUrN Renovefmnet(Inet-addr da) -> Packet p;
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INTEGER Byte-size; $(Currently 8)
INTEGER Addr-size; $(Currently 3)
INTEGER Vord'size; $(Currently 4)

FROM Inet-rt:
INTEGER Hin-inet-hdr; $(Currently 20 bytes)

FUNCTIONS

VFUN Offsets(Half-wd id; Byte pcol; Inet-addr sa, da) ->
SET-OF Offset o;

$(The description calls for the most recent arrival to be

used so there is no need to store duplicate information
if two fragments arrive with the same offset.)

HIDDEN;
DERIVATION o - 0;

VFN rnfrags(Fra fd fd) -> Packet p;

HIDDEN;
INITIALLY p = ?;

VFUN Current-ids() -> SET-OF Frag-id id;
HIDDEN;
DERIVATION id - { 1;

OFUN Recv-pkt(Inet-addr da);
EXCEPTIONS

P ESOURCEF~PROR;

EFFECTS

f" - NF'I(Frag-id);
"CurrerrIds) - {fd) UNION Current-ids();

'Tn-frap.s(fd) -EFFECTS~OF Remove-frn-t(a);

OFUN Set'offset(Frag-~d fd);
EXCEPTIONS

!nvalid-id(fd);

EFFECTS
Offsets(In-frags(fd).id, In-frags(fd).pcol, In-frags(fd).sa,

In'frags(fd).da) - In-frags(fd).fo;

OFUN Destroy(Frag~ld fd);

EXCEPT IONS
Tnvalid-id(fd);

EFFECTS
'Currentids() Currentids() DIFF {fd};

END-tODULE
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7. IMPLEHENTATION

The specifications given above do not define the implementation

details to get a runable version of the IP. In fact an attempt was

made while writing the specifications to leave individual

implementors as much freedom as possible. The final stages of HDH

are the implementation stages and each specific

implementation would need to carry them out.

In writing the specifications an attempt has been made to make the

difference between a host and a gateway, at the internet level, as

transparent as possible. For a host all of the modules defined will be

needed to some extent; although a particular implementation may make

some simplifying assumptions (e.g. all protocols above their IP

implementation will pass in packets which do not need to be fragmented

to be sent out using the local network). A gateway can be implemented

using only a few of the modules: the Send-frag, Recv-frag and Inet-rt

modules. Since gateways do not do reassembly they will not need

Reassemble. The Gateway-Gateway protocol would need to be refined since

the specifications give only an interface to it.

Implementors do not have complete independence from one another.

Many variables are exported from one module to another. The methodology

also requires certain cross-module checking to be done to show that the

implementation maintains the specified properties. The methodology also

assumos that a common mechanism would exist for raising and handling

exceptions. There also needs to be an agreed upon representation for

built-in types (e.g. ASCII vs. EBCDIC). Most of these restrictions are
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the type that a common compiler would introduce. Since this cannot be

assured in an internet environment the specification techniques should

be enhanced to allow such details to be specified.

The major problem which will occur in implementation is in areas

where the specification cannot be implemented in a cost-effective way.

The internet header checksum presents this type of problem. Ideally

the checksum would be a flag which is either true or false. As we

have neither perfect hardware nor perfect transmission media,

this cannot be implemented, only approximated. As specification

techniques improve it should be possible to include in the

requirements the level of confidence desired and include it as a part of

the specification.

The normal assumption made in a computer system is that the value

read from a memory location is the same as the previous value stored

there. The hardware is not pertect the system incorporates error

checking/correcting circuits to bring the system reliability to the

point vhere users normally trust the data from memory. A tradeoff is

made between cos and reliability. Similar tradeoffs must be made when

implementing protocols. In a manner analopous to parity the IP

concludes that a datagrar. is "good" if it passes the checksum test. The

degree of assurance is an implementation decision question. The IP

description recopnlzes this and provides the following guidance:

The checksum field is the 16 bit one's complement of the one's
complement of all the 16 bit words in the header... This is a
simple to compute checksum and experimental evidence indicates
it is adequate, but it is provisional and may be replaced by a
CRC procedure, depending on further evidence [PosO].
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Attempting to include the checksum as a function of the

representation of the fields in the header runs into a problem with

the specification technique. HDM defines the world in terms of

strongly typed objects. Since the actual bit representation is not

available the checksum algorithm cannot be defined except at a very low

level (a level at which the tottl datagram is represented as a

collection of bits). This is consistent since the checksun

algorithm does violate the concept of strong typing. (HDM is not

alone in having the particular problem; most specification

techniques depend on strong typing.)

The problem of checksumming unfortunately keeps cascading upward.

The Transmission Control Protocol (TCP), which runs on top of the IP,

also checksums. Because of this It cannot use the interface to the IP

which provides access only to virtual objects but must have access to

the actual physical representations.

The UDP will have a similar problem with the user interface to

the IP specified in section 4 even though that interface is Intended

to provide true datagram service. The UDP provides a checksum;

therefore, it too must have access to the physical representations

of the objects.

- 84 -

,, , i ..... . .



8. PROBLEIIS FJCOUNTERED IN THE SPECIFICATION PROCESS

a. Problems Due to the Protocol Des;cription

1. Physical addresses

Using physical addresses at the IP interfaces presents some

problems in the specifications. Since an address is visible to the

protocols above IP, any algorithm used to supply a mix of equivalent

physical addresses would have to be specified as a part of the visible

interface of IP because the effects of this algorithm could be used

by the protocol above IP. (It may not be a recommended practice to

use knowledge of this algorithm but systems programmers are

well-known for taking advantage of everything they can if they feel

they can use it to increase "efficiency". Since the algorithm could be

so used, tne specification, to correctly model the IP, would have to

reflect the algorithm's visibility.) Any change of this algorithm.

would require reverifirat1o,- ot all levels above to which this is

visible. The cuirent specification of IP is such that SEE:D can supply

an adcress (which must be validated) but if it does not supply a

source address a delault will be used at the highest level. Those

higher level protocols which need to use physical addresses will use

the Phys'addr level as the user interface.

2. Problems with Return Route Option (PRO)

RRO causes a prubler in decomposinp the system into levels due to

the possibility of an undescribed interaction between RRO and the DF

flag. If a packet arrives at a gateway with RRO requested, the DF flag
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set and is at the maximum packet size for the next net it is to enter

the IP description does not -ive a well defined action to be taken. Two

actions are possible: discard the packet (i.e. add the RRO then, unon

discovering the packet cannot be sent on without fragmentation, discard

it as called out in the description) or send it on without adding the

route inforration. The specifications take the first action.

RRO can be of an unbounded length but the header can only be of a

finite length. The description did not state what happened in the event

of overflow. It is also possible for the return route to have "holes"

in it. It could overflow at one point but have room at a later point in

its route because the SRO can shrink. In both cases information is lost

and it is not possible to differentiate between a datagram with a

complete route and one with missinp addresses. A reasonable action

seems to be to discard overflow and generate a CER. This is the

approach specified but it does not completely resolve the difficulties.

Since datagram transmission is unreliable the GER may be lost so a host

receiving a datagram with the RRO cannot be sure that some addresses

have not been lost on the way.

A possible change would be to generate a separate datarram (similar

to a General Error Report (GER)) to send the return route. Some of

these way be lost as the datapram protocol is not a reliable

transmission protocol but this system does not have a maximum number of

addresses it can accomodate in the return route, whereas t'e current

system can handle a maximum of nine addresses. It also solves all of

the problems detailed above with header overflow. Although some of the
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route may be lost, it should be possible to adeouately reconstruct from

the pieces that arrive if the error free thruput of the system is

reasonable. The current system is not reliable due to overflow problems

and overflow, once it occurs, will continue.

3. The visibility of fragmentation

There are four fields in the IP header dealing with fragmentation

(Indentification (id), More fragments flag, Don't fragment (DF) flag

and the fragment offset). In some sense fragmentation should not

appear at the user interface to IP. It is not part of the host-host

addressing but a gateway-host interaction; it should be

nidden by the TP interface. Unfortunately, the id field and the DF

flag need to be available at the user interface as the protocol

currently stands.

At first it seemed that the DF flag could be eliminated by keeping

knowledge within the IP as to whether or not a host has reassembly

capability. However, there is at least one case where this status can

change. The net could be reloading a system which had crashed and its

bootstrap loader may not be able to handle fragmentation althouph the

normal system could [PosOcj.

The id field is an optional field at the user interface; if not

supplied the IP r:ust generate one. One clarification that should he

made is that a particular protocol must either always supply the ic

field or else never supply it. The above specifications have this

restriction though not having it is even easier to specify. It is added
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to make unnecessary much complication which would be required in an

implementation in which ids could be supplied or not supplied by !:he

higher level protocol at random.

If a higher level protocol is suppling ids to the IP care rust be

exercised to prevent reassembly problems. Since the concatenation of

source addressldestination addressiprotocollid must uniquely identify

a packet for purposes of fragment reassembly, it requires that

multiple instantiations of the same higher level protocol which

supplies the id must cooperate to prevent a possible frapment mix-un.

b. Problems Due to the Methodology

I. Data representation

For the most part the data structures provided by Special proved

adequate to the task. The major problem occurred in representing the

network as it appears to the IP. The existence of multisets as a

predefined type would have made the specification simler and easier to

understand.

2. Assertion language

A more serious problem is the lack of a unified approach to handle

the global assertion about the system. No tools exist to handle such

assertions except for those that check the assertion for the KSOS

security model. This shortcoming is well recognized by SRI and work is

being done to give HDI the capability to handle the proof steps reouired

by the vO stape of the methodology.
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It would also be useful to organize the assertions so that

properties about the system could be easily found. The specification

should state the axioms which are the basis of the proof and the

assertions which the system being developed is to maintain.

3. Specification environment

Another problem which exists with using HDM! is a lack of unity in

its support tools. The difficulties experienced in maintaining

consistancy among modules and versions reaffirmed the author's belief

that an integraci environment is needed to develop software. SRI is

working to poduce an integrated specification and verification

environment Lut the results of the current SRI effort were not

available.

4. Exception handling

The HDt model for exception hand'iTg is that the only observable

efiecL w !:Vi a function raises an exception is the passage of time. In

th: p1oLocoi area this may need to be modified. Example - packet gets

duplicated, one gets through, other pets an exception.

9. CONCLUSIOUS

Formal specification techniques can be Lsed to specify

comtiuriLcation pLococols although there are many areas in which the

specification techniques must be improved to allow complete

specification and verification.
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1ID11 provides a good methodological framework in which to

investigate protocol specification. Many shortconings '-xist in the

machine support for HD1 but the whole area of verification

environments is still a field of research. Planning is underway to

start an effort to develop a reasonable environment based on the

concepts of a number of verification systems each of which has its

strong and weak points.

As noted above, HDM also has weaknesses as a methodology for

developing protocols. Work is needed to either integrate parts of

other existing efforts or develop improved techniques where no existing

methodology solves the problem.

There are three clear areas in which propress is needed to allow

more complete formal specifications of protocols. First, mathematical

modeling techniques for protocols must be improved so that the

requirements can be completely and clearly expressed. Second,

specification techniques must be augmented to include time as a

parameter. The work on temporal logic being done at SRI and Stanford

University [LamPO, HOPO] is a start in this area. Third, specifications

must be able to handle details such as checksums (which "pull apart"

data types) in a reasonable way.

The specification of a protocol is an evolvin, process for two

reasons: improvements in specification techniques and changes in

protocol functionality. Both of these require modifications to the

protocol's formal specification. One definite requirement will be a

good programming language to keep the amount of work tractable.
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Finally it would be useful to implement a version of the IP

accordinp to the formal specification then verify the irlerentation.

It would be interesting to compare the results of such an effort with

other IP implementations. Major areas for comparison could include time

to implerent, time to test, performance characteristics, and proble.s

found in the running code -- both in functionality covered by the formal

specifications and also in areas not so covered.
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GLOSSARY

PF Don't rrasment fla.

FTP File Transfer Protocol

HDM Hierarchical Development Methodology.

IHL Internet Header Length - length of the internet protocol
header in octets.

IP (DoD Standard) Internet Protocol.

KSOS Kernelized Secure Operating System.

11F More-Fragments flag.

MTU Maximum transmission Unit - maximum. size of a fragment

which a network can transport.

NCP Network Control Program

PSOS Provably Secure Operatinp System.

PUP An Internetwork Architecture of the Xerox Palo Alto
Research Center.

RPO Return Route Option - provide a record of the route this
datagran took in transmission. Also interpretated as
Record Route Option.

SPECIAL SPECIfication and Assertion Languape - A nonprocedural

language associated with HP?!.

SRO Source Route Option - provide a list of addresses a

datagram is to be routed through.

TCP (DoD Standard) Transmission Control Protocol.

TOS Type Of Service - Field in the IP header.

-TL Time To Live - Field in IP header.

UP? User Datagram Protocol.
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